Detailed syntax breakdown of Definition df-ms
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cms 14573 | 
. 2
class
MetSp | 
| 2 |   | vf | 
. . . . . . 7
setvar 𝑓 | 
| 3 | 2 | cv 1363 | 
. . . . . 6
class 𝑓 | 
| 4 |   | cds 12764 | 
. . . . . 6
class
dist | 
| 5 | 3, 4 | cfv 5258 | 
. . . . 5
class
(dist‘𝑓) | 
| 6 |   | cbs 12678 | 
. . . . . . 7
class
Base | 
| 7 | 3, 6 | cfv 5258 | 
. . . . . 6
class
(Base‘𝑓) | 
| 8 | 7, 7 | cxp 4661 | 
. . . . 5
class
((Base‘𝑓)
× (Base‘𝑓)) | 
| 9 | 5, 8 | cres 4665 | 
. . . 4
class
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓))) | 
| 10 |   | cmet 14093 | 
. . . . 5
class
Met | 
| 11 | 7, 10 | cfv 5258 | 
. . . 4
class
(Met‘(Base‘𝑓)) | 
| 12 | 9, 11 | wcel 2167 | 
. . 3
wff
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓)))
∈ (Met‘(Base‘𝑓)) | 
| 13 |   | cxms 14572 | 
. . 3
class
∞MetSp | 
| 14 | 12, 2, 13 | crab 2479 | 
. 2
class {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} | 
| 15 | 1, 14 | wceq 1364 | 
1
wff MetSp =
{𝑓 ∈ ∞MetSp
∣ ((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓)))
∈ (Met‘(Base‘𝑓))} |