Detailed syntax breakdown of Definition df-ms
Step | Hyp | Ref
| Expression |
1 | | cms 13131 |
. 2
class
MetSp |
2 | | vf |
. . . . . . 7
setvar 𝑓 |
3 | 2 | cv 1347 |
. . . . . 6
class 𝑓 |
4 | | cds 12489 |
. . . . . 6
class
dist |
5 | 3, 4 | cfv 5198 |
. . . . 5
class
(dist‘𝑓) |
6 | | cbs 12416 |
. . . . . . 7
class
Base |
7 | 3, 6 | cfv 5198 |
. . . . . 6
class
(Base‘𝑓) |
8 | 7, 7 | cxp 4609 |
. . . . 5
class
((Base‘𝑓)
× (Base‘𝑓)) |
9 | 5, 8 | cres 4613 |
. . . 4
class
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓))) |
10 | | cmet 12775 |
. . . . 5
class
Met |
11 | 7, 10 | cfv 5198 |
. . . 4
class
(Met‘(Base‘𝑓)) |
12 | 9, 11 | wcel 2141 |
. . 3
wff
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓)))
∈ (Met‘(Base‘𝑓)) |
13 | | cxms 13130 |
. . 3
class
∞MetSp |
14 | 12, 2, 13 | crab 2452 |
. 2
class {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
15 | 1, 14 | wceq 1348 |
1
wff MetSp =
{𝑓 ∈ ∞MetSp
∣ ((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓)))
∈ (Met‘(Base‘𝑓))} |