ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-unit GIF version

Definition df-unit 13257
Description: Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-unit Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))

Detailed syntax breakdown of Definition df-unit
StepHypRef Expression
1 cui 13254 . 2 class Unit
2 vw . . 3 setvar 𝑤
3 cvv 2737 . . 3 class V
42cv 1352 . . . . . . 7 class 𝑤
5 cdsr 13253 . . . . . . 7 class r
64, 5cfv 5216 . . . . . 6 class (∥r𝑤)
7 coppr 13237 . . . . . . . 8 class oppr
84, 7cfv 5216 . . . . . . 7 class (oppr𝑤)
98, 5cfv 5216 . . . . . 6 class (∥r‘(oppr𝑤))
106, 9cin 3128 . . . . 5 class ((∥r𝑤) ∩ (∥r‘(oppr𝑤)))
1110ccnv 4625 . . . 4 class ((∥r𝑤) ∩ (∥r‘(oppr𝑤)))
12 cur 13140 . . . . . 6 class 1r
134, 12cfv 5216 . . . . 5 class (1r𝑤)
1413csn 3592 . . . 4 class {(1r𝑤)}
1511, 14cima 4629 . . 3 class (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)})
162, 3, 15cmpt 4064 . 2 class (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
171, 16wceq 1353 1 wff Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
Colors of variables: wff set class
This definition is referenced by:  isunitd  13273
  Copyright terms: Public domain W3C validator