Step | Hyp | Ref
| Expression |
1 | | cui 13254 |
. 2
class
Unit |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 2737 |
. . 3
class
V |
4 | 2 | cv 1352 |
. . . . . . 7
class 𝑤 |
5 | | cdsr 13253 |
. . . . . . 7
class
∥r |
6 | 4, 5 | cfv 5216 |
. . . . . 6
class
(∥r‘𝑤) |
7 | | coppr 13237 |
. . . . . . . 8
class
oppr |
8 | 4, 7 | cfv 5216 |
. . . . . . 7
class
(oppr‘𝑤) |
9 | 8, 5 | cfv 5216 |
. . . . . 6
class
(∥r‘(oppr‘𝑤)) |
10 | 6, 9 | cin 3128 |
. . . . 5
class
((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) |
11 | 10 | ccnv 4625 |
. . . 4
class ◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) |
12 | | cur 13140 |
. . . . . 6
class
1r |
13 | 4, 12 | cfv 5216 |
. . . . 5
class
(1r‘𝑤) |
14 | 13 | csn 3592 |
. . . 4
class
{(1r‘𝑤)} |
15 | 11, 14 | cima 4629 |
. . 3
class (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)}) |
16 | 2, 3, 15 | cmpt 4064 |
. 2
class (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
17 | 1, 16 | wceq 1353 |
1
wff Unit =
(𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |