Detailed syntax breakdown of Definition df-unit
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cui 13643 | 
. 2
class
Unit | 
| 2 |   | vw | 
. . 3
setvar 𝑤 | 
| 3 |   | cvv 2763 | 
. . 3
class
V | 
| 4 | 2 | cv 1363 | 
. . . . . . 7
class 𝑤 | 
| 5 |   | cdsr 13642 | 
. . . . . . 7
class
∥r | 
| 6 | 4, 5 | cfv 5258 | 
. . . . . 6
class
(∥r‘𝑤) | 
| 7 |   | coppr 13623 | 
. . . . . . . 8
class
oppr | 
| 8 | 4, 7 | cfv 5258 | 
. . . . . . 7
class
(oppr‘𝑤) | 
| 9 | 8, 5 | cfv 5258 | 
. . . . . 6
class
(∥r‘(oppr‘𝑤)) | 
| 10 | 6, 9 | cin 3156 | 
. . . . 5
class
((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) | 
| 11 | 10 | ccnv 4662 | 
. . . 4
class ◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) | 
| 12 |   | cur 13515 | 
. . . . . 6
class
1r | 
| 13 | 4, 12 | cfv 5258 | 
. . . . 5
class
(1r‘𝑤) | 
| 14 | 13 | csn 3622 | 
. . . 4
class
{(1r‘𝑤)} | 
| 15 | 11, 14 | cima 4666 | 
. . 3
class (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)}) | 
| 16 | 2, 3, 15 | cmpt 4094 | 
. 2
class (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) | 
| 17 | 1, 16 | wceq 1364 | 
1
wff Unit =
(𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |