Detailed syntax breakdown of Definition df-dvdsr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cdsr 13642 | 
. 2
class
∥r | 
| 2 |   | vw | 
. . 3
setvar 𝑤 | 
| 3 |   | cvv 2763 | 
. . 3
class
V | 
| 4 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 5 | 4 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 6 | 2 | cv 1363 | 
. . . . . . 7
class 𝑤 | 
| 7 |   | cbs 12678 | 
. . . . . . 7
class
Base | 
| 8 | 6, 7 | cfv 5258 | 
. . . . . 6
class
(Base‘𝑤) | 
| 9 | 5, 8 | wcel 2167 | 
. . . . 5
wff 𝑥 ∈ (Base‘𝑤) | 
| 10 |   | vz | 
. . . . . . . . 9
setvar 𝑧 | 
| 11 | 10 | cv 1363 | 
. . . . . . . 8
class 𝑧 | 
| 12 |   | cmulr 12756 | 
. . . . . . . . 9
class
.r | 
| 13 | 6, 12 | cfv 5258 | 
. . . . . . . 8
class
(.r‘𝑤) | 
| 14 | 11, 5, 13 | co 5922 | 
. . . . . . 7
class (𝑧(.r‘𝑤)𝑥) | 
| 15 |   | vy | 
. . . . . . . 8
setvar 𝑦 | 
| 16 | 15 | cv 1363 | 
. . . . . . 7
class 𝑦 | 
| 17 | 14, 16 | wceq 1364 | 
. . . . . 6
wff (𝑧(.r‘𝑤)𝑥) = 𝑦 | 
| 18 | 17, 10, 8 | wrex 2476 | 
. . . . 5
wff
∃𝑧 ∈
(Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦 | 
| 19 | 9, 18 | wa 104 | 
. . . 4
wff (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦) | 
| 20 | 19, 4, 15 | copab 4093 | 
. . 3
class
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)} | 
| 21 | 2, 3, 20 | cmpt 4094 | 
. 2
class (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | 
| 22 | 1, 21 | wceq 1364 | 
1
wff
∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |