ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd GIF version

Theorem isunitd 13602
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1 (𝜑𝑈 = (Unit‘𝑅))
isunitd.2 (𝜑1 = (1r𝑅))
isunitd.3 (𝜑 = (∥r𝑅))
isunitd.4 (𝜑𝑆 = (oppr𝑅))
isunitd.5 (𝜑𝐸 = (∥r𝑆))
isunitd.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
isunitd (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))

Proof of Theorem isunitd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4 (𝜑𝑈 = (Unit‘𝑅))
2 df-unit 13586 . . . . 5 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
3 fveq2 5554 . . . . . . . 8 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
4 2fveq3 5559 . . . . . . . 8 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r‘(oppr𝑅)))
53, 4ineq12d 3361 . . . . . . 7 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
65cnveqd 4838 . . . . . 6 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
7 fveq2 5554 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
87sneqd 3631 . . . . . 6 (𝑟 = 𝑅 → {(1r𝑟)} = {(1r𝑅)})
96, 8imaeq12d 5006 . . . . 5 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
10 isunitd.r . . . . . 6 (𝜑𝑅 ∈ SRing)
1110elexd 2773 . . . . 5 (𝜑𝑅 ∈ V)
12 dvdsrex 13594 . . . . . . 7 (𝑅 ∈ SRing → (∥r𝑅) ∈ V)
13 inex1g 4165 . . . . . . 7 ((∥r𝑅) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
1410, 12, 133syl 17 . . . . . 6 (𝜑 → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
15 cnvexg 5203 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
16 imaexg 5019 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
1714, 15, 163syl 17 . . . . 5 (𝜑 → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
182, 9, 11, 17fvmptd3 5651 . . . 4 (𝜑 → (Unit‘𝑅) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
191, 18eqtrd 2226 . . 3 (𝜑𝑈 = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
2019eleq2d 2263 . 2 (𝜑 → (𝑋𝑈𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
21 isunitd.3 . . . . . 6 (𝜑 = (∥r𝑅))
22 isunitd.5 . . . . . . 7 (𝜑𝐸 = (∥r𝑆))
23 isunitd.4 . . . . . . . 8 (𝜑𝑆 = (oppr𝑅))
2423fveq2d 5558 . . . . . . 7 (𝜑 → (∥r𝑆) = (∥r‘(oppr𝑅)))
2522, 24eqtrd 2226 . . . . . 6 (𝜑𝐸 = (∥r‘(oppr𝑅)))
2621, 25ineq12d 3361 . . . . 5 (𝜑 → ( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
2726cnveqd 4838 . . . 4 (𝜑( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
28 isunitd.2 . . . . 5 (𝜑1 = (1r𝑅))
2928sneqd 3631 . . . 4 (𝜑 → { 1 } = {(1r𝑅)})
3027, 29imaeq12d 5006 . . 3 (𝜑 → (( 𝐸) “ { 1 }) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
3130eleq2d 2263 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
32 reldvdsrsrg 13588 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
3310, 32syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
3421releqd 4743 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
3533, 34mpbird 167 . . . 4 (𝜑 → Rel )
36 relin1 4777 . . . 4 (Rel → Rel ( 𝐸))
37 eliniseg2 5045 . . . 4 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
3835, 36, 373syl 17 . . 3 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
39 brin 4081 . . 3 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4038, 39bitrdi 196 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 )))
4120, 31, 403bitr2d 216 1 (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cin 3152  {csn 3618   class class class wbr 4029  ccnv 4658  cima 4662  Rel wrel 4664  cfv 5254  1rcur 13455  SRingcsrg 13459  opprcoppr 13563  rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  1unit  13603  unitcld  13604  opprunitd  13606  crngunit  13607  unitmulcl  13609  unitgrp  13612  unitnegcl  13626  unitpropdg  13644  elrhmunit  13673  subrguss  13732  subrgunit  13735
  Copyright terms: Public domain W3C validator