Step | Hyp | Ref
| Expression |
1 | | isunitd.1 |
. . . 4
β’ (π β π = (Unitβπ
)) |
2 | | df-unit 13257 |
. . . . 5
β’ Unit =
(π β V β¦ (β‘((β₯rβπ) β©
(β₯rβ(opprβπ))) β {(1rβπ)})) |
3 | | fveq2 5515 |
. . . . . . . 8
β’ (π = π
β (β₯rβπ) =
(β₯rβπ
)) |
4 | | 2fveq3 5520 |
. . . . . . . 8
β’ (π = π
β
(β₯rβ(opprβπ)) =
(β₯rβ(opprβπ
))) |
5 | 3, 4 | ineq12d 3337 |
. . . . . . 7
β’ (π = π
β ((β₯rβπ) β©
(β₯rβ(opprβπ))) = ((β₯rβπ
) β©
(β₯rβ(opprβπ
)))) |
6 | 5 | cnveqd 4803 |
. . . . . 6
β’ (π = π
β β‘((β₯rβπ) β©
(β₯rβ(opprβπ))) = β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
)))) |
7 | | fveq2 5515 |
. . . . . . 7
β’ (π = π
β (1rβπ) = (1rβπ
)) |
8 | 7 | sneqd 3605 |
. . . . . 6
β’ (π = π
β {(1rβπ)} = {(1rβπ
)}) |
9 | 6, 8 | imaeq12d 4971 |
. . . . 5
β’ (π = π
β (β‘((β₯rβπ) β©
(β₯rβ(opprβπ))) β {(1rβπ)}) = (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)})) |
10 | | isunitd.r |
. . . . . 6
β’ (π β π
β SRing) |
11 | 10 | elexd 2750 |
. . . . 5
β’ (π β π
β V) |
12 | | dvdsrex 13265 |
. . . . . . 7
β’ (π
β SRing β
(β₯rβπ
) β V) |
13 | | inex1g 4139 |
. . . . . . 7
β’
((β₯rβπ
) β V β
((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β V) |
14 | 10, 12, 13 | 3syl 17 |
. . . . . 6
β’ (π β
((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β V) |
15 | | cnvexg 5166 |
. . . . . 6
β’
(((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β V β β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β V) |
16 | | imaexg 4982 |
. . . . . 6
β’ (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β V β (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)}) β V) |
17 | 14, 15, 16 | 3syl 17 |
. . . . 5
β’ (π β (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)}) β V) |
18 | 2, 9, 11, 17 | fvmptd3 5609 |
. . . 4
β’ (π β (Unitβπ
) = (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)})) |
19 | 1, 18 | eqtrd 2210 |
. . 3
β’ (π β π = (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)})) |
20 | 19 | eleq2d 2247 |
. 2
β’ (π β (π β π β π β (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)}))) |
21 | | isunitd.3 |
. . . . . 6
β’ (π β β₯ =
(β₯rβπ
)) |
22 | | isunitd.5 |
. . . . . . 7
β’ (π β πΈ = (β₯rβπ)) |
23 | | isunitd.4 |
. . . . . . . 8
β’ (π β π = (opprβπ
)) |
24 | 23 | fveq2d 5519 |
. . . . . . 7
β’ (π β
(β₯rβπ) =
(β₯rβ(opprβπ
))) |
25 | 22, 24 | eqtrd 2210 |
. . . . . 6
β’ (π β πΈ =
(β₯rβ(opprβπ
))) |
26 | 21, 25 | ineq12d 3337 |
. . . . 5
β’ (π β ( β₯ β© πΈ) =
((β₯rβπ
) β©
(β₯rβ(opprβπ
)))) |
27 | 26 | cnveqd 4803 |
. . . 4
β’ (π β β‘( β₯ β© πΈ) = β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
)))) |
28 | | isunitd.2 |
. . . . 5
β’ (π β 1 =
(1rβπ
)) |
29 | 28 | sneqd 3605 |
. . . 4
β’ (π β { 1 } =
{(1rβπ
)}) |
30 | 27, 29 | imaeq12d 4971 |
. . 3
β’ (π β (β‘( β₯ β© πΈ) β { 1 }) = (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)})) |
31 | 30 | eleq2d 2247 |
. 2
β’ (π β (π β (β‘( β₯ β© πΈ) β { 1 }) β π β (β‘((β₯rβπ
) β©
(β₯rβ(opprβπ
))) β {(1rβπ
)}))) |
32 | | reldvdsrsrg 13259 |
. . . . . 6
β’ (π
β SRing β Rel
(β₯rβπ
)) |
33 | 10, 32 | syl 14 |
. . . . 5
β’ (π β Rel
(β₯rβπ
)) |
34 | 21 | releqd 4710 |
. . . . 5
β’ (π β (Rel β₯ β Rel
(β₯rβπ
))) |
35 | 33, 34 | mpbird 167 |
. . . 4
β’ (π β Rel β₯ ) |
36 | | relin1 4744 |
. . . 4
β’ (Rel
β₯
β Rel ( β₯ β© πΈ)) |
37 | | eliniseg2 5008 |
. . . 4
β’ (Rel (
β₯
β© πΈ) β (π β (β‘( β₯ β© πΈ) β { 1 }) β π( β₯ β© πΈ) 1 )) |
38 | 35, 36, 37 | 3syl 17 |
. . 3
β’ (π β (π β (β‘( β₯ β© πΈ) β { 1 }) β π( β₯ β© πΈ) 1 )) |
39 | | brin 4055 |
. . 3
β’ (π( β₯ β© πΈ) 1 β (π β₯ 1 β§ ππΈ 1 )) |
40 | 38, 39 | bitrdi 196 |
. 2
β’ (π β (π β (β‘( β₯ β© πΈ) β { 1 }) β (π β₯ 1 β§ ππΈ 1 ))) |
41 | 20, 31, 40 | 3bitr2d 216 |
1
β’ (π β (π β π β (π β₯ 1 β§ ππΈ 1 ))) |