ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd GIF version

Theorem isunitd 13740
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1 (𝜑𝑈 = (Unit‘𝑅))
isunitd.2 (𝜑1 = (1r𝑅))
isunitd.3 (𝜑 = (∥r𝑅))
isunitd.4 (𝜑𝑆 = (oppr𝑅))
isunitd.5 (𝜑𝐸 = (∥r𝑆))
isunitd.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
isunitd (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))

Proof of Theorem isunitd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4 (𝜑𝑈 = (Unit‘𝑅))
2 df-unit 13724 . . . . 5 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
3 fveq2 5561 . . . . . . . 8 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
4 2fveq3 5566 . . . . . . . 8 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r‘(oppr𝑅)))
53, 4ineq12d 3366 . . . . . . 7 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
65cnveqd 4843 . . . . . 6 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
7 fveq2 5561 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
87sneqd 3636 . . . . . 6 (𝑟 = 𝑅 → {(1r𝑟)} = {(1r𝑅)})
96, 8imaeq12d 5011 . . . . 5 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
10 isunitd.r . . . . . 6 (𝜑𝑅 ∈ SRing)
1110elexd 2776 . . . . 5 (𝜑𝑅 ∈ V)
12 dvdsrex 13732 . . . . . . 7 (𝑅 ∈ SRing → (∥r𝑅) ∈ V)
13 inex1g 4170 . . . . . . 7 ((∥r𝑅) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
1410, 12, 133syl 17 . . . . . 6 (𝜑 → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
15 cnvexg 5208 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
16 imaexg 5024 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
1714, 15, 163syl 17 . . . . 5 (𝜑 → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
182, 9, 11, 17fvmptd3 5658 . . . 4 (𝜑 → (Unit‘𝑅) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
191, 18eqtrd 2229 . . 3 (𝜑𝑈 = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
2019eleq2d 2266 . 2 (𝜑 → (𝑋𝑈𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
21 isunitd.3 . . . . . 6 (𝜑 = (∥r𝑅))
22 isunitd.5 . . . . . . 7 (𝜑𝐸 = (∥r𝑆))
23 isunitd.4 . . . . . . . 8 (𝜑𝑆 = (oppr𝑅))
2423fveq2d 5565 . . . . . . 7 (𝜑 → (∥r𝑆) = (∥r‘(oppr𝑅)))
2522, 24eqtrd 2229 . . . . . 6 (𝜑𝐸 = (∥r‘(oppr𝑅)))
2621, 25ineq12d 3366 . . . . 5 (𝜑 → ( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
2726cnveqd 4843 . . . 4 (𝜑( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
28 isunitd.2 . . . . 5 (𝜑1 = (1r𝑅))
2928sneqd 3636 . . . 4 (𝜑 → { 1 } = {(1r𝑅)})
3027, 29imaeq12d 5011 . . 3 (𝜑 → (( 𝐸) “ { 1 }) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
3130eleq2d 2266 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
32 reldvdsrsrg 13726 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
3310, 32syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
3421releqd 4748 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
3533, 34mpbird 167 . . . 4 (𝜑 → Rel )
36 relin1 4782 . . . 4 (Rel → Rel ( 𝐸))
37 eliniseg2 5050 . . . 4 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
3835, 36, 373syl 17 . . 3 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
39 brin 4086 . . 3 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4038, 39bitrdi 196 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 )))
4120, 31, 403bitr2d 216 1 (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  {csn 3623   class class class wbr 4034  ccnv 4663  cima 4667  Rel wrel 4669  cfv 5259  1rcur 13593  SRingcsrg 13597  opprcoppr 13701  rcdsr 13720  Unitcui 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mgp 13555  df-srg 13598  df-dvdsr 13723  df-unit 13724
This theorem is referenced by:  1unit  13741  unitcld  13742  opprunitd  13744  crngunit  13745  unitmulcl  13747  unitgrp  13750  unitnegcl  13764  unitpropdg  13782  elrhmunit  13811  subrguss  13870  subrgunit  13873
  Copyright terms: Public domain W3C validator