ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd GIF version

Theorem isunitd 13605
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1 (𝜑𝑈 = (Unit‘𝑅))
isunitd.2 (𝜑1 = (1r𝑅))
isunitd.3 (𝜑 = (∥r𝑅))
isunitd.4 (𝜑𝑆 = (oppr𝑅))
isunitd.5 (𝜑𝐸 = (∥r𝑆))
isunitd.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
isunitd (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))

Proof of Theorem isunitd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4 (𝜑𝑈 = (Unit‘𝑅))
2 df-unit 13589 . . . . 5 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
3 fveq2 5555 . . . . . . . 8 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
4 2fveq3 5560 . . . . . . . 8 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r‘(oppr𝑅)))
53, 4ineq12d 3362 . . . . . . 7 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
65cnveqd 4839 . . . . . 6 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
7 fveq2 5555 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
87sneqd 3632 . . . . . 6 (𝑟 = 𝑅 → {(1r𝑟)} = {(1r𝑅)})
96, 8imaeq12d 5007 . . . . 5 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
10 isunitd.r . . . . . 6 (𝜑𝑅 ∈ SRing)
1110elexd 2773 . . . . 5 (𝜑𝑅 ∈ V)
12 dvdsrex 13597 . . . . . . 7 (𝑅 ∈ SRing → (∥r𝑅) ∈ V)
13 inex1g 4166 . . . . . . 7 ((∥r𝑅) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
1410, 12, 133syl 17 . . . . . 6 (𝜑 → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
15 cnvexg 5204 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
16 imaexg 5020 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
1714, 15, 163syl 17 . . . . 5 (𝜑 → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
182, 9, 11, 17fvmptd3 5652 . . . 4 (𝜑 → (Unit‘𝑅) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
191, 18eqtrd 2226 . . 3 (𝜑𝑈 = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
2019eleq2d 2263 . 2 (𝜑 → (𝑋𝑈𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
21 isunitd.3 . . . . . 6 (𝜑 = (∥r𝑅))
22 isunitd.5 . . . . . . 7 (𝜑𝐸 = (∥r𝑆))
23 isunitd.4 . . . . . . . 8 (𝜑𝑆 = (oppr𝑅))
2423fveq2d 5559 . . . . . . 7 (𝜑 → (∥r𝑆) = (∥r‘(oppr𝑅)))
2522, 24eqtrd 2226 . . . . . 6 (𝜑𝐸 = (∥r‘(oppr𝑅)))
2621, 25ineq12d 3362 . . . . 5 (𝜑 → ( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
2726cnveqd 4839 . . . 4 (𝜑( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
28 isunitd.2 . . . . 5 (𝜑1 = (1r𝑅))
2928sneqd 3632 . . . 4 (𝜑 → { 1 } = {(1r𝑅)})
3027, 29imaeq12d 5007 . . 3 (𝜑 → (( 𝐸) “ { 1 }) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
3130eleq2d 2263 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
32 reldvdsrsrg 13591 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
3310, 32syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
3421releqd 4744 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
3533, 34mpbird 167 . . . 4 (𝜑 → Rel )
36 relin1 4778 . . . 4 (Rel → Rel ( 𝐸))
37 eliniseg2 5046 . . . 4 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
3835, 36, 373syl 17 . . 3 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
39 brin 4082 . . 3 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4038, 39bitrdi 196 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 )))
4120, 31, 403bitr2d 216 1 (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  {csn 3619   class class class wbr 4030  ccnv 4659  cima 4663  Rel wrel 4665  cfv 5255  1rcur 13458  SRingcsrg 13462  opprcoppr 13566  rcdsr 13585  Unitcui 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-srg 13463  df-dvdsr 13588  df-unit 13589
This theorem is referenced by:  1unit  13606  unitcld  13607  opprunitd  13609  crngunit  13610  unitmulcl  13612  unitgrp  13615  unitnegcl  13629  unitpropdg  13647  elrhmunit  13676  subrguss  13735  subrgunit  13738
  Copyright terms: Public domain W3C validator