ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd GIF version

Theorem isunitd 13662
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1 (𝜑𝑈 = (Unit‘𝑅))
isunitd.2 (𝜑1 = (1r𝑅))
isunitd.3 (𝜑 = (∥r𝑅))
isunitd.4 (𝜑𝑆 = (oppr𝑅))
isunitd.5 (𝜑𝐸 = (∥r𝑆))
isunitd.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
isunitd (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))

Proof of Theorem isunitd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4 (𝜑𝑈 = (Unit‘𝑅))
2 df-unit 13646 . . . . 5 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
3 fveq2 5558 . . . . . . . 8 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
4 2fveq3 5563 . . . . . . . 8 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r‘(oppr𝑅)))
53, 4ineq12d 3365 . . . . . . 7 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
65cnveqd 4842 . . . . . 6 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
7 fveq2 5558 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
87sneqd 3635 . . . . . 6 (𝑟 = 𝑅 → {(1r𝑟)} = {(1r𝑅)})
96, 8imaeq12d 5010 . . . . 5 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
10 isunitd.r . . . . . 6 (𝜑𝑅 ∈ SRing)
1110elexd 2776 . . . . 5 (𝜑𝑅 ∈ V)
12 dvdsrex 13654 . . . . . . 7 (𝑅 ∈ SRing → (∥r𝑅) ∈ V)
13 inex1g 4169 . . . . . . 7 ((∥r𝑅) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
1410, 12, 133syl 17 . . . . . 6 (𝜑 → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
15 cnvexg 5207 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
16 imaexg 5023 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
1714, 15, 163syl 17 . . . . 5 (𝜑 → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
182, 9, 11, 17fvmptd3 5655 . . . 4 (𝜑 → (Unit‘𝑅) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
191, 18eqtrd 2229 . . 3 (𝜑𝑈 = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
2019eleq2d 2266 . 2 (𝜑 → (𝑋𝑈𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
21 isunitd.3 . . . . . 6 (𝜑 = (∥r𝑅))
22 isunitd.5 . . . . . . 7 (𝜑𝐸 = (∥r𝑆))
23 isunitd.4 . . . . . . . 8 (𝜑𝑆 = (oppr𝑅))
2423fveq2d 5562 . . . . . . 7 (𝜑 → (∥r𝑆) = (∥r‘(oppr𝑅)))
2522, 24eqtrd 2229 . . . . . 6 (𝜑𝐸 = (∥r‘(oppr𝑅)))
2621, 25ineq12d 3365 . . . . 5 (𝜑 → ( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
2726cnveqd 4842 . . . 4 (𝜑( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
28 isunitd.2 . . . . 5 (𝜑1 = (1r𝑅))
2928sneqd 3635 . . . 4 (𝜑 → { 1 } = {(1r𝑅)})
3027, 29imaeq12d 5010 . . 3 (𝜑 → (( 𝐸) “ { 1 }) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
3130eleq2d 2266 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
32 reldvdsrsrg 13648 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
3310, 32syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
3421releqd 4747 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
3533, 34mpbird 167 . . . 4 (𝜑 → Rel )
36 relin1 4781 . . . 4 (Rel → Rel ( 𝐸))
37 eliniseg2 5049 . . . 4 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
3835, 36, 373syl 17 . . 3 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
39 brin 4085 . . 3 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4038, 39bitrdi 196 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 )))
4120, 31, 403bitr2d 216 1 (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  {csn 3622   class class class wbr 4033  ccnv 4662  cima 4666  Rel wrel 4668  cfv 5258  1rcur 13515  SRingcsrg 13519  opprcoppr 13623  rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-srg 13520  df-dvdsr 13645  df-unit 13646
This theorem is referenced by:  1unit  13663  unitcld  13664  opprunitd  13666  crngunit  13667  unitmulcl  13669  unitgrp  13672  unitnegcl  13686  unitpropdg  13704  elrhmunit  13733  subrguss  13792  subrgunit  13795
  Copyright terms: Public domain W3C validator