ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isunitd GIF version

Theorem isunitd 14078
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
isunitd.1 (𝜑𝑈 = (Unit‘𝑅))
isunitd.2 (𝜑1 = (1r𝑅))
isunitd.3 (𝜑 = (∥r𝑅))
isunitd.4 (𝜑𝑆 = (oppr𝑅))
isunitd.5 (𝜑𝐸 = (∥r𝑆))
isunitd.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
isunitd (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))

Proof of Theorem isunitd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isunitd.1 . . . 4 (𝜑𝑈 = (Unit‘𝑅))
2 df-unit 14061 . . . . 5 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
3 fveq2 5629 . . . . . . . 8 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
4 2fveq3 5634 . . . . . . . 8 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r‘(oppr𝑅)))
53, 4ineq12d 3406 . . . . . . 7 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
65cnveqd 4898 . . . . . 6 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
7 fveq2 5629 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
87sneqd 3679 . . . . . 6 (𝑟 = 𝑅 → {(1r𝑟)} = {(1r𝑅)})
96, 8imaeq12d 5069 . . . . 5 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
10 isunitd.r . . . . . 6 (𝜑𝑅 ∈ SRing)
1110elexd 2813 . . . . 5 (𝜑𝑅 ∈ V)
12 dvdsrex 14070 . . . . . . 7 (𝑅 ∈ SRing → (∥r𝑅) ∈ V)
13 inex1g 4220 . . . . . . 7 ((∥r𝑅) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
1410, 12, 133syl 17 . . . . . 6 (𝜑 → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
15 cnvexg 5266 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → ((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V)
16 imaexg 5082 . . . . . 6 (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) ∈ V → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
1714, 15, 163syl 17 . . . . 5 (𝜑 → (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}) ∈ V)
182, 9, 11, 17fvmptd3 5730 . . . 4 (𝜑 → (Unit‘𝑅) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
191, 18eqtrd 2262 . . 3 (𝜑𝑈 = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
2019eleq2d 2299 . 2 (𝜑 → (𝑋𝑈𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
21 isunitd.3 . . . . . 6 (𝜑 = (∥r𝑅))
22 isunitd.5 . . . . . . 7 (𝜑𝐸 = (∥r𝑆))
23 isunitd.4 . . . . . . . 8 (𝜑𝑆 = (oppr𝑅))
2423fveq2d 5633 . . . . . . 7 (𝜑 → (∥r𝑆) = (∥r‘(oppr𝑅)))
2522, 24eqtrd 2262 . . . . . 6 (𝜑𝐸 = (∥r‘(oppr𝑅)))
2621, 25ineq12d 3406 . . . . 5 (𝜑 → ( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
2726cnveqd 4898 . . . 4 (𝜑( 𝐸) = ((∥r𝑅) ∩ (∥r‘(oppr𝑅))))
28 isunitd.2 . . . . 5 (𝜑1 = (1r𝑅))
2928sneqd 3679 . . . 4 (𝜑 → { 1 } = {(1r𝑅)})
3027, 29imaeq12d 5069 . . 3 (𝜑 → (( 𝐸) “ { 1 }) = (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)}))
3130eleq2d 2299 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋 ∈ (((∥r𝑅) ∩ (∥r‘(oppr𝑅))) “ {(1r𝑅)})))
32 reldvdsrsrg 14064 . . . . . 6 (𝑅 ∈ SRing → Rel (∥r𝑅))
3310, 32syl 14 . . . . 5 (𝜑 → Rel (∥r𝑅))
3421releqd 4803 . . . . 5 (𝜑 → (Rel ↔ Rel (∥r𝑅)))
3533, 34mpbird 167 . . . 4 (𝜑 → Rel )
36 relin1 4837 . . . 4 (Rel → Rel ( 𝐸))
37 eliniseg2 5108 . . . 4 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
3835, 36, 373syl 17 . . 3 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
39 brin 4136 . . 3 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4038, 39bitrdi 196 . 2 (𝜑 → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 )))
4120, 31, 403bitr2d 216 1 (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  {csn 3666   class class class wbr 4083  ccnv 4718  cima 4722  Rel wrel 4724  cfv 5318  1rcur 13930  SRingcsrg 13934  opprcoppr 14038  rcdsr 14057  Unitcui 14058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mgp 13892  df-srg 13935  df-dvdsr 14060  df-unit 14061
This theorem is referenced by:  1unit  14079  unitcld  14080  opprunitd  14082  crngunit  14083  unitmulcl  14085  unitgrp  14088  unitnegcl  14102  unitpropdg  14120  elrhmunit  14149  subrguss  14208  subrgunit  14211
  Copyright terms: Public domain W3C validator