| Step | Hyp | Ref
| Expression |
| 1 | | isunitd.1 |
. . . 4
⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| 2 | | df-unit 13646 |
. . . . 5
⊢ Unit =
(𝑟 ∈ V ↦ (◡((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) “ {(1r‘𝑟)})) |
| 3 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (∥r‘𝑟) =
(∥r‘𝑅)) |
| 4 | | 2fveq3 5563 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 →
(∥r‘(oppr‘𝑟)) =
(∥r‘(oppr‘𝑅))) |
| 5 | 3, 4 | ineq12d 3365 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) = ((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅)))) |
| 6 | 5 | cnveqd 4842 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ◡((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) = ◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅)))) |
| 7 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) |
| 8 | 7 | sneqd 3635 |
. . . . . 6
⊢ (𝑟 = 𝑅 → {(1r‘𝑟)} = {(1r‘𝑅)}) |
| 9 | 6, 8 | imaeq12d 5010 |
. . . . 5
⊢ (𝑟 = 𝑅 → (◡((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) “ {(1r‘𝑟)}) = (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)})) |
| 10 | | isunitd.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ SRing) |
| 11 | 10 | elexd 2776 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ V) |
| 12 | | dvdsrex 13654 |
. . . . . . 7
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ∈ V) |
| 13 | | inex1g 4169 |
. . . . . . 7
⊢
((∥r‘𝑅) ∈ V →
((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) ∈ V) |
| 14 | 10, 12, 13 | 3syl 17 |
. . . . . 6
⊢ (𝜑 →
((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) ∈ V) |
| 15 | | cnvexg 5207 |
. . . . . 6
⊢
(((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) ∈ V → ◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) ∈ V) |
| 16 | | imaexg 5023 |
. . . . . 6
⊢ (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) ∈ V → (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)}) ∈ V) |
| 17 | 14, 15, 16 | 3syl 17 |
. . . . 5
⊢ (𝜑 → (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)}) ∈ V) |
| 18 | 2, 9, 11, 17 | fvmptd3 5655 |
. . . 4
⊢ (𝜑 → (Unit‘𝑅) = (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)})) |
| 19 | 1, 18 | eqtrd 2229 |
. . 3
⊢ (𝜑 → 𝑈 = (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)})) |
| 20 | 19 | eleq2d 2266 |
. 2
⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)}))) |
| 21 | | isunitd.3 |
. . . . . 6
⊢ (𝜑 → ∥ =
(∥r‘𝑅)) |
| 22 | | isunitd.5 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (∥r‘𝑆)) |
| 23 | | isunitd.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = (oppr‘𝑅)) |
| 24 | 23 | fveq2d 5562 |
. . . . . . 7
⊢ (𝜑 →
(∥r‘𝑆) =
(∥r‘(oppr‘𝑅))) |
| 25 | 22, 24 | eqtrd 2229 |
. . . . . 6
⊢ (𝜑 → 𝐸 =
(∥r‘(oppr‘𝑅))) |
| 26 | 21, 25 | ineq12d 3365 |
. . . . 5
⊢ (𝜑 → ( ∥ ∩ 𝐸) =
((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅)))) |
| 27 | 26 | cnveqd 4842 |
. . . 4
⊢ (𝜑 → ◡( ∥ ∩ 𝐸) = ◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅)))) |
| 28 | | isunitd.2 |
. . . . 5
⊢ (𝜑 → 1 =
(1r‘𝑅)) |
| 29 | 28 | sneqd 3635 |
. . . 4
⊢ (𝜑 → { 1 } =
{(1r‘𝑅)}) |
| 30 | 27, 29 | imaeq12d 5010 |
. . 3
⊢ (𝜑 → (◡( ∥ ∩ 𝐸) “ { 1 }) = (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)})) |
| 31 | 30 | eleq2d 2266 |
. 2
⊢ (𝜑 → (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ 𝑋 ∈ (◡((∥r‘𝑅) ∩
(∥r‘(oppr‘𝑅))) “ {(1r‘𝑅)}))) |
| 32 | | reldvdsrsrg 13648 |
. . . . . 6
⊢ (𝑅 ∈ SRing → Rel
(∥r‘𝑅)) |
| 33 | 10, 32 | syl 14 |
. . . . 5
⊢ (𝜑 → Rel
(∥r‘𝑅)) |
| 34 | 21 | releqd 4747 |
. . . . 5
⊢ (𝜑 → (Rel ∥ ↔ Rel
(∥r‘𝑅))) |
| 35 | 33, 34 | mpbird 167 |
. . . 4
⊢ (𝜑 → Rel ∥ ) |
| 36 | | relin1 4781 |
. . . 4
⊢ (Rel
∥
→ Rel ( ∥ ∩ 𝐸)) |
| 37 | | eliniseg2 5049 |
. . . 4
⊢ (Rel (
∥
∩ 𝐸) → (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ 𝑋( ∥ ∩ 𝐸) 1 )) |
| 38 | 35, 36, 37 | 3syl 17 |
. . 3
⊢ (𝜑 → (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ 𝑋( ∥ ∩ 𝐸) 1 )) |
| 39 | | brin 4085 |
. . 3
⊢ (𝑋( ∥ ∩ 𝐸) 1 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) |
| 40 | 38, 39 | bitrdi 196 |
. 2
⊢ (𝜑 → (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 ))) |
| 41 | 20, 31, 40 | 3bitr2d 216 |
1
⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 ))) |