HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremqusex 13201 Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
((𝑅𝑉𝑊) → (𝑅 /s ) ∈ V)
 
Theoremqusin 13202 Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑𝑊)    &   (𝜑𝑅𝑍)    &   (𝜑 → ( 𝑉) ⊆ 𝑉)       (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
 
Theoremqusbas 13203 Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑𝑊)    &   (𝜑𝑅𝑍)       (𝜑 → (𝑉 / ) = (Base‘𝑈))
 
Theoremdivsfval 13204* Value of the function in qusval 13199. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
(𝜑 Er 𝑉)    &   (𝜑𝑉𝑊)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )       (𝜑 → (𝐹𝐴) = [𝐴] )
 
Theoremdivsfvalg 13205* Value of the function in qusval 13199. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
(𝜑 Er 𝑉)    &   (𝜑𝑉𝑊)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )    &   (𝜑𝐴𝑉)       (𝜑 → (𝐹𝐴) = [𝐴] )
 
Theoremercpbllemg 13206* Lemma for ercpbl 13207. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
(𝜑 Er 𝑉)    &   (𝜑𝑉𝑊)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)       (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
 
Theoremercpbl 13207* Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
(𝜑 Er 𝑉)    &   (𝜑𝑉𝑊)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)    &   (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))       ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
 
Theoremerlecpbl 13208* Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
(𝜑 Er 𝑉)    &   (𝜑𝑉𝑊)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )    &   (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴𝑁𝐵𝐶𝑁𝐷)))       ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐴𝑁𝐵𝐶𝑁𝐷)))
 
Theoremqusaddvallemg 13209* Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑍)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})    &   (𝜑·𝑊)       ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremqusaddflemg 13210* The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑍)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)    &   𝐹 = (𝑥𝑉 ↦ [𝑥] )    &   (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})    &   (𝜑·𝑊)       (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
 
Theoremqusaddval 13211* The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑍)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)    &    · = (+g𝑅)    &    = (+g𝑈)       ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremqusaddf 13212* The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑍)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)    &    · = (+g𝑅)    &    = (+g𝑈)       (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
 
Theoremqusmulval 13213* The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑍)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)    &    · = (.r𝑅)    &    = (.r𝑈)       ((𝜑𝑋𝑉𝑌𝑉) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremqusmulf 13214* The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑍)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)    &    · = (.r𝑅)    &    = (.r𝑈)       (𝜑 :((𝑉 / ) × (𝑉 / ))⟶(𝑉 / ))
 
Theoremfnpr2o 13215 Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
 
Theoremfnpr2ob 13216 Biconditional version of fnpr2o 13215. (Contributed by Jim Kingdon, 27-Sep-2023.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
 
Theoremfvpr0o 13217 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
(𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
 
Theoremfvpr1o 13218 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
(𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
 
Theoremfvprif 13219 The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
 
Theoremxpsfrnel 13220* Elementhood in the target space of the function 𝐹 appearing in xpsval 13228. (Contributed by Mario Carneiro, 14-Aug-2015.)
(𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
 
Theoremxpsfeq 13221 A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
(𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
 
Theoremxpsfrnel2 13222* Elementhood in the target space of the function 𝐹 appearing in xpsval 13228. (Contributed by Mario Carneiro, 15-Aug-2015.)
({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
 
Theoremxpscf 13223 Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.)
({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}:2o𝐴 ↔ (𝑋𝐴𝑌𝐴))
 
Theoremxpsfval 13224* The value of the function appearing in xpsval 13228. (Contributed by Mario Carneiro, 15-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})       ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
 
Theoremxpsff1o 13225* The function appearing in xpsval 13228 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})       𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
 
Theoremxpsfrn 13226* A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})       ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
 
Theoremxpsff1o2 13227* The function appearing in xpsval 13228 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})       𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
 
Theoremxpsval 13228* Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
𝑇 = (𝑅 ×s 𝑆)    &   𝑋 = (Base‘𝑅)    &   𝑌 = (Base‘𝑆)    &   (𝜑𝑅𝑉)    &   (𝜑𝑆𝑊)    &   𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})    &   𝐺 = (Scalar‘𝑅)    &   𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})       (𝜑𝑇 = (𝐹s 𝑈))
 
PART 7  BASIC ALGEBRAIC STRUCTURES
 
7.1  Monoids
 
7.1.1  Magmas

According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.".

Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following:

With df-mpo 5956, binary operations are defined by a rule, and with df-ov 5954, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation 5954 (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 are more precisely called internal binary operations. If, in addition, the result is also contained in the set 𝑆, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set 𝑆" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 5954).

The definition of magmas (Mgm, see df-mgm 13232) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible.

 
Syntaxcplusf 13229 Extend class notation with group addition as a function.
class +𝑓
 
Syntaxcmgm 13230 Extend class notation with class of all magmas.
class Mgm
 
Definitiondf-plusf 13231* Define group addition function. Usually we will use +g directly instead of +𝑓, and they have the same behavior in most cases. The main advantage of +𝑓 for any magma is that it is a guaranteed function (mgmplusf 13242), while +g only has closure (mgmcl 13235). (Contributed by Mario Carneiro, 14-Aug-2015.)
+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
 
Definitiondf-mgm 13232* A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Mgm = {𝑔[(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
 
Theoremismgm 13233* The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremismgmn0 13234* The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremmgmcl 13235 Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremisnmgm 13236 A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
 
Theoremmgmsscl 13237 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)       (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
 
Theoremplusffvalg 13238* The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
 
Theoremplusfvalg 13239 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝐺𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))
 
Theoremplusfeqg 13240 If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )
 
Theoremplusffng 13241 The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺𝑉 Fn (𝐵 × 𝐵))
 
Theoremmgmplusf 13242 The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+𝑓𝑀)       (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremintopsn 13243 The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
(( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgmb1mgm1 13244 The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgm0 13245 Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)
 
Theoremmgm1 13246 The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mgm)
 
Theoremopifismgmdc 13247* A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
𝐵 = (Base‘𝑀)    &   (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → DECID 𝜓)    &   (𝜑 → ∃𝑥 𝑥𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)       (𝜑𝑀 ∈ Mgm)
 
7.1.2  Identity elements

According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 13248) is an important property of monoids, and therefore also for groups, but also for magmas not required to be associative. Magmas with an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15).

In the context of extensible structures, the identity element (of any magma 𝑀) is defined as "group identity element" (0g𝑀), see df-0g 13134. Related theorems which are already valid for magmas are provided in the following.

 
Theoremmgmidmo 13248* A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
 
Theoremgrpidvalg 13249* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
 
Theoremgrpidpropdg 13250* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (0g𝐾) = (0g𝐿))
 
Theoremfn0g 13251 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
0g Fn V
 
Theorem0g0 13252 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
∅ = (0g‘∅)
 
Theoremismgmid 13253* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
 
Theoremmgmidcl 13254* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑0𝐵)
 
Theoremmgmlrid 13255* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremismgmid2 13256* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝑈𝐵)    &   ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)       (𝜑𝑈 = 0 )
 
Theoremlidrideqd 13257* If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
(𝜑𝐿𝐵)    &   (𝜑𝑅𝐵)    &   (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)    &   (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)       (𝜑𝐿 = 𝑅)
 
Theoremlidrididd 13258* If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 13257) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
(𝜑𝐿𝐵)    &   (𝜑𝑅𝐵)    &   (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)    &   (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝜑𝐿 = 0 )
 
Theoremgrpidd 13259* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑0 = (0g𝐺))
 
Theoremmgmidsssn0 13260* Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}       (𝐺𝑉𝑂 ⊆ { 0 })
 
Theoremgrpinvalem 13261* Lemma for grpinva 13262. (Contributed by NM, 9-Aug-2013.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)    &   ((𝜑𝜓) → 𝑋𝐵)    &   ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)       ((𝜑𝜓) → 𝑋 = 𝑂)
 
Theoremgrpinva 13262* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)    &   ((𝜑𝜓) → 𝑋𝐵)    &   ((𝜑𝜓) → 𝑁𝐵)    &   ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)       ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
 
Theoremgrprida 13263* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)       ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
 
7.1.3  Iterated sums in a magma

The symbol Σg is mostly used in the context of abelian groups. Therefore, it is usually called "group sum". It can be defined, however, in arbitrary magmas (then it should be called "iterated sum"). If the magma is not required to be commutative or associative, then the order of the summands and the order in which summations are done become important. If the magma is not unital, then one cannot define a meaningful empty sum. See the comment for df-igsum 13135.

 
Theoremfngsum 13264 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Σg Fn (V × V)
 
Theoremigsumvalx 13265* Expand out the substitutions in df-igsum 13135. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹𝑋)    &   (𝜑 → dom 𝐹 = 𝐴)       (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
 
Theoremigsumval 13266* Expand out the substitutions in df-igsum 13135. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑋)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
 
Theoremgsumfzval 13267 An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
 
Theoremgsumpropd 13268 The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑 → (+g𝐺) = (+g𝐻))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumpropd2 13269* A stronger version of gsumpropd 13268, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 13270. (Contributed by Thierry Arnoux, 28-Jun-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsummgmpropd 13270* A stronger version of gsumpropd 13268 if at least one of the involved structures is a magma, see gsumpropd2 13269. (Contributed by AV, 31-Jan-2020.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑𝐺 ∈ Mgm)    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumress 13271* The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑆)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑋)    &   (𝜑𝑆𝐵)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑0𝑆)    &   ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsum0g 13272 Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
0 = (0g𝐺)       (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
 
Theoremgsumval2 13273 Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremgsumsplit1r 13274 Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
 
Theoremgsumprval 13275 Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 = (𝑀 + 1))    &   (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
 
Theoremgsumpr12val 13276 Value of the group sum operation over the pair {1, 2}. (Contributed by AV, 14-Dec-2018.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹:{1, 2}⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘1) + (𝐹‘2)))
 
7.1.4  Semigroups

A semigroup (Smgrp, see df-sgrp 13278) is a set together with an associative binary operation (see Wikipedia, Semigroup, 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup 13278). In other words, a semigroup is an associative magma. The notion of semigroup is a generalization of that of group where the existence of an identity or inverses is not required.

 
Syntaxcsgrp 13277 Extend class notation with class of all semigroups.
class Smgrp
 
Definitiondf-sgrp 13278* A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 13232), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
 
Theoremissgrp 13279* The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
 
Theoremissgrpv 13280* The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀𝑉 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 
Theoremissgrpn0 13281* The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 
Theoremisnsgrp 13282 A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))
 
Theoremsgrpmgm 13283 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
(𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
 
Theoremsgrpass 13284 A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
 
Theoremsgrpcl 13285 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
𝐵 = (Base‘𝐺)    &    = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremsgrp0 13286 Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp)
 
Theoremsgrp1 13287 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Smgrp)
 
Theoremissgrpd 13288* Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝐺𝑉)       (𝜑𝐺 ∈ Smgrp)
 
Theoremsgrppropd 13289* If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
(𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   (𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))
 
Theoremprdsplusgsgrpcl 13290 Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Smgrp)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
 
Theoremprdssgrpd 13291 The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Smgrp)       (𝜑𝑌 ∈ Smgrp)
 
7.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 13293, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 13295. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 13292 Extend class notation with class of all monoids.
class Mnd
 
Definitiondf-mnd 13293* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 13299), whose operation is associative (see mndass 13300) and has a two-sided neutral element (see mndid 13301), see also ismnd 13295. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
 
Theoremismnddef 13294* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremismnd 13295* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13299), whose operation is associative (so, a semigroup, see also mndass 13300) and has a two-sided neutral element (see mndid 13301). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremsgrpidmndm 13296* A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
 
Theoremmndsgrp 13297 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
 
Theoremmndmgm 13298 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
 
Theoremmndcl 13299 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremmndass 13300 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >