HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddcncntoplem 13201* Lemma for addcncntop 13202, subcncntop 13203, and mulcncntop 13204. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &    + :(ℂ × ℂ)⟶ℂ    &   ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))        + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremaddcncntop 13202 Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))        + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremsubcncntop 13203 Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))        − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremmulcncntop 13204 Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))        · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremdivcnap 13205* Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})       (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
 
Theoremfsumcncntop 13206* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
8.2.7  Topological definitions using the reals
 
Syntaxccncf 13207 Extend class notation to include the operation which returns a class of continuous complex functions.
class cn
 
Definitiondf-cncf 13208* Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.)
cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
 
Theoremcncfval 13209* The value of the continuous complex function operation is the set of continuous functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
 
Theoremelcncf 13210* Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
 
Theoremelcncf2 13211* Version of elcncf 13210 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
 
Theoremcncfrss 13212 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
 
Theoremcncfrss2 13213 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
 
Theoremcncff 13214 A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
(𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
 
Theoremcncfi 13215* Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
 
Theoremelcncf1di 13216* Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))    &   (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))       (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
 
Theoremelcncf1ii 13217* Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
𝐹:𝐴𝐵    &   ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)    &   (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))       ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵))
 
Theoremrescncf 13218 A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
(𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
 
Theoremcncffvrn 13219 Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))
 
Theoremcncfss 13220 The set of continuous functions is expanded when the range is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
 
Theoremclimcncf 13221 Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹 ∈ (𝐴cn𝐵))    &   (𝜑𝐺:𝑍𝐴)    &   (𝜑𝐺𝐷)    &   (𝜑𝐷𝐴)       (𝜑 → (𝐹𝐺) ⇝ (𝐹𝐷))
 
Theoremabscncf 13222 Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
abs ∈ (ℂ–cn→ℝ)
 
Theoremrecncf 13223 Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
ℜ ∈ (ℂ–cn→ℝ)
 
Theoremimcncf 13224 Imaginary part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
ℑ ∈ (ℂ–cn→ℝ)
 
Theoremcjcncf 13225 Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
∗ ∈ (ℂ–cn→ℂ)
 
Theoremmulc1cncf 13226* Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))       (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremdivccncfap 13227* Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremcncfco 13228 The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
(𝜑𝐹 ∈ (𝐴cn𝐵))    &   (𝜑𝐺 ∈ (𝐵cn𝐶))       (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))
 
Theoremcncfmet 13229 Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))    &   𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))    &   𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
 
Theoremcncfcncntop 13230 Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝐾 = (𝐽t 𝐴)    &   𝐿 = (𝐽t 𝐵)       ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
 
Theoremcncfcn1cntop 13231 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
 
Theoremcncfmptc 13232* A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
 
Theoremcncfmptid 13233* The identity function is a continuous function on . (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
 
Theoremcncfmpt1f 13234* Composition of continuous functions. cn analogue of cnmpt11f 12934. (Contributed by Mario Carneiro, 3-Sep-2014.)
(𝜑𝐹 ∈ (ℂ–cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
 
Theoremcncfmpt2fcntop 13235* Composition of continuous functions. cn analogue of cnmpt12f 12936. (Contributed by Mario Carneiro, 3-Sep-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremaddccncf 13236* Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))       (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremcdivcncfap 13237* Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))       (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
 
Theoremnegcncf 13238* The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
𝐹 = (𝑥𝐴 ↦ -𝑥)       (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
 
Theoremnegfcncf 13239* The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
𝐺 = (𝑥𝐴 ↦ -(𝐹𝑥))       (𝐹 ∈ (𝐴cn→ℂ) → 𝐺 ∈ (𝐴cn→ℂ))
 
Theoremmulcncflem 13240* Lemma for mulcncf 13241. (Contributed by Jim Kingdon, 29-May-2023.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))    &   (𝜑𝑉𝑋)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑𝑆 ∈ ℝ+)    &   (𝜑𝑇 ∈ ℝ+)    &   (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))    &   (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))    &   (𝜑 → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))       (𝜑 → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
 
Theoremmulcncf 13241* The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremexpcncf 13242* The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
(𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
 
Theoremcnrehmeocntop 13243* The canonical bijection from (ℝ × ℝ) to described in cnref1o 9588 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))    &   𝐽 = (topGen‘ran (,))    &   𝐾 = (MetOpen‘(abs ∘ − ))       𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
 
Theoremcnopnap 13244* The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
(𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
 
PART 9  BASIC REAL AND COMPLEX ANALYSIS
 
9.0.1  Dedekind cuts
 
Theoremdedekindeulemuub 13245* Lemma for dedekindeu 13251. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴𝑈)       (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
 
Theoremdedekindeulemub 13246* Lemma for dedekindeu 13251. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
 
Theoremdedekindeulemloc 13247* Lemma for dedekindeu 13251. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
 
Theoremdedekindeulemlub 13248* Lemma for dedekindeu 13251. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
 
Theoremdedekindeulemlu 13249* Lemma for dedekindeu 13251. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
Theoremdedekindeulemeu 13250* Lemma for dedekindeu 13251. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐴 ∧ ∀𝑟𝑈 𝐴 < 𝑟))    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐵 ∧ ∀𝑟𝑈 𝐵 < 𝑟))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ⊥)
 
Theoremdedekindeu 13251* A Dedekind cut identifies a unique real number. Similar to df-inp 7407 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃!𝑥 ∈ ℝ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
Theoremsuplociccreex 13252* An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7971 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 < 𝐶)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsuplociccex 13253* An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7971 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 < 𝐶)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))       (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremdedekindicclemuub 13254* Lemma for dedekindicc 13261. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐶𝑈)       (𝜑 → ∀𝑧𝐿 𝑧 < 𝐶)
 
Theoremdedekindicclemub 13255* Lemma for dedekindicc 13261. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
 
Theoremdedekindicclemloc 13256* Lemma for dedekindicc 13261. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
 
Theoremdedekindicclemlub 13257* Lemma for dedekindicc 13261. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
 
Theoremdedekindicclemlu 13258* Lemma for dedekindicc 13261. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
Theoremdedekindicclemeu 13259* Lemma for dedekindicc 13261. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐶 ∧ ∀𝑟𝑈 𝐶 < 𝑟))    &   (𝜑𝐷 ∈ (𝐴[,]𝐵))    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐷 ∧ ∀𝑟𝑈 𝐷 < 𝑟))    &   (𝜑𝐶 < 𝐷)       (𝜑 → ⊥)
 
Theoremdedekindicclemicc 13260* Lemma for dedekindicc 13261. Same as dedekindicc 13261, except that we merely show 𝑥 to be an element of (𝐴[,]𝐵). Later we will strengthen that to (𝐴(,)𝐵). (Contributed by Jim Kingdon, 5-Jan-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
Theoremdedekindicc 13261* A Dedekind cut identifies a unique real number. Similar to df-inp 7407 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
9.0.2  Intermediate value theorem
 
Theoremivthinclemlm 13262* Lemma for ivthinc 13271. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
 
Theoremivthinclemum 13263* Lemma for ivthinc 13271. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
 
Theoremivthinclemlopn 13264* Lemma for ivthinc 13271. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}    &   (𝜑𝑄𝐿)       (𝜑 → ∃𝑟𝐿 𝑄 < 𝑟)
 
Theoremivthinclemlr 13265* Lemma for ivthinc 13271. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
 
Theoremivthinclemuopn 13266* Lemma for ivthinc 13271. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}    &   (𝜑𝑆𝑅)       (𝜑 → ∃𝑞𝑅 𝑞 < 𝑆)
 
Theoremivthinclemur 13267* Lemma for ivthinc 13271. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
 
Theoremivthinclemdisj 13268* Lemma for ivthinc 13271. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → (𝐿𝑅) = ∅)
 
Theoremivthinclemloc 13269* Lemma for ivthinc 13271. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑅)))
 
Theoremivthinclemex 13270* Lemma for ivthinc 13271. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
 
Theoremivthinc 13271* The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
Theoremivthdec 13272* The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
9.1  Derivatives
 
9.1.1  Real and complex differentiation
 
9.1.1.1  Derivatives of functions of one complex or real variable
 
Syntaxclimc 13273 The limit operator.
class lim
 
Syntaxcdv 13274 The derivative operator.
class D
 
Definitiondf-limced 13275* Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
 
Definitiondf-dvap 13276* Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
 
Theoremlimcrcl 13277 Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
 
Theoremlimccl 13278 Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝐹 lim 𝐵) ⊆ ℂ
 
Theoremellimc3apf 13279* Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   𝑧𝐹       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
 
Theoremellimc3ap 13280* Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
 
Theoremlimcdifap 13281* It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)       (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ {𝑥𝐴𝑥 # 𝐵}) lim 𝐵))
 
Theoremlimcmpted 13282* Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)       (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
 
Theoremlimcimolemlt 13283* Lemma for limcimo 13284. (Contributed by Jim Kingdon, 3-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑋 ∈ (𝐹 lim 𝐵))    &   (𝜑𝑌 ∈ (𝐹 lim 𝐵))    &   (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))       (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
 
Theoremlimcimo 13284* Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
 
Theoremlimcresi 13285 Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
 
Theoremcnplimcim 13286 If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnplimclemle 13287 Lemma for cnplimccntop 13289. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑍𝐴)    &   ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))    &   (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)       (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
 
Theoremcnplimclemr 13288 Lemma for cnplimccntop 13289. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))       (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
Theoremcnplimccntop 13289 A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnlimcim 13290* If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimc 13291* 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimci 13292 If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑𝐹 ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
 
Theoremcnmptlimc 13293* If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)    &   (𝑥 = 𝐵𝑋 = 𝑌)       (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
 
Theoremlimccnpcntop 13294 If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
(𝜑𝐹:𝐴𝐷)    &   (𝜑𝐷 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐷)    &   (𝜑𝐶 ∈ (𝐹 lim 𝐵))    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))       (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
 
Theoremlimccnp2lem 13295* Lemma for limccnp2cntop 13296. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))    &   𝑥𝜑    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐿 ∈ ℝ+)    &   (𝜑 → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))       (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
 
Theoremlimccnp2cntop 13296* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))       (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
 
Theoremlimccoap 13297* Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})    &   ((𝜑𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}) → 𝑆 ∈ ℂ)    &   (𝜑𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋))    &   (𝜑𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋))
 
Theoremreldvg 13298 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
 
Theoremdvlemap 13299* Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝐹:𝐷⟶ℂ)    &   (𝜑𝐷 ⊆ ℂ)    &   (𝜑𝐵𝐷)       ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
 
Theoremdvfvalap 13300* Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13970
  Copyright terms: Public domain < Previous  Next >