HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrpinvval 13201* The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
 
Theoremgrpinvfng 13202 Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝐺𝑉𝑁 Fn 𝐵)
 
Theoremgrpsubfvalg 13203* Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)    &    = (-g𝐺)       (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
 
Theoremgrpsubval 13204 Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)    &    = (-g𝐺)       ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))
 
Theoremgrpinvf 13205 The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
 
Theoremgrpinvcl 13206 A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
 
Theoremgrpinvcld 13207 A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) ∈ 𝐵)
 
Theoremgrplinv 13208 The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
 
Theoremgrprinv 13209 The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
 
Theoremgrpinvid1 13210 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
 
Theoremgrpinvid2 13211 The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) = 𝑌 ↔ (𝑌 + 𝑋) = 0 ))
 
Theoremisgrpinv 13212* Properties showing that a function 𝑀 is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
 
Theoremgrplinvd 13213 The left inverse of a group element. Deduction associated with grplinv 13208. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝑁𝑋) + 𝑋) = 0 )
 
Theoremgrprinvd 13214 The right inverse of a group element. Deduction associated with grprinv 13209. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 + (𝑁𝑋)) = 0 )
 
Theoremgrplrinv 13215* In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
 
Theoremgrpidinv2 13216* A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
 
Theoremgrpidinv 13217* A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
 
Theoremgrpinvid 13218 The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
0 = (0g𝐺)    &   𝑁 = (invg𝐺)       (𝐺 ∈ Grp → (𝑁0 ) = 0 )
 
Theoremgrpressid 13219 A group restricted to its base set is a group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12760. (Contributed by Jim Kingdon, 28-Feb-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
 
Theoremgrplcan 13220 Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
 
Theoremgrpasscan1 13221 An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)
 
Theoremgrpasscan2 13222 An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
 
Theoremgrpidrcan 13223 If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑋 + 𝑍) = 𝑋𝑍 = 0 ))
 
Theoremgrpidlcan 13224 If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))
 
Theoremgrpinvinv 13225 Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
 
Theoremgrpinvcnv 13226 The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝐺 ∈ Grp → 𝑁 = 𝑁)
 
Theoremgrpinv11 13227 The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
 
Theoremgrpinvf1o 13228 The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)       (𝜑𝑁:𝐵1-1-onto𝐵)
 
Theoremgrpinvnz 13229 The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → (𝑁𝑋) ≠ 0 )
 
Theoremgrpinvnzcl 13230 The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑁𝑋) ∈ (𝐵 ∖ { 0 }))
 
Theoremgrpsubinv 13231 Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))
 
Theoremgrplmulf1o 13232* Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
 
Theoremgrpinvpropdg 13233* If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (invg𝐾) = (invg𝐿))
 
Theoremgrpidssd 13234* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
(𝜑𝑀 ∈ Grp)    &   (𝜑𝑆 ∈ Grp)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐵 ⊆ (Base‘𝑀))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))       (𝜑 → (0g𝑀) = (0g𝑆))
 
Theoremgrpinvssd 13235* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
(𝜑𝑀 ∈ Grp)    &   (𝜑𝑆 ∈ Grp)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐵 ⊆ (Base‘𝑀))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))       (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
 
Theoremgrpinvadd 13236 The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
 
Theoremgrpsubf 13237 Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremgrpsubcl 13238 Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremgrpsubrcan 13239 Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
 
Theoremgrpinvsub 13240 Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
 
Theoremgrpinvval2 13241 A df-neg 8203-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (invg𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = ( 0 𝑋))
 
Theoremgrpsubid 13242 Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
 
Theoremgrpsubid1 13243 Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
 
Theoremgrpsubeq0 13244 If the difference between two group elements is zero, they are equal. (subeq0 8255 analog.) (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
 
Theoremgrpsubadd0sub 13245 Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    = (-g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ( 0 𝑌)))
 
Theoremgrpsubadd 13246 Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))
 
Theoremgrpsubsub 13247 Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
 
Theoremgrpaddsubass 13248 Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))
 
Theoremgrppncan 13249 Cancellation law for subtraction (pncan 8235 analog). (Contributed by NM, 16-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑌) = 𝑋)
 
Theoremgrpnpcan 13250 Cancellation law for subtraction (npcan 8238 analog). (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
 
Theoremgrpsubsub4 13251 Double group subtraction (subsub4 8262 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))
 
Theoremgrppnpcan2 13252 Cancellation law for mixed addition and subtraction. (pnpcan2 8269 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) (𝑌 + 𝑍)) = (𝑋 𝑌))
 
Theoremgrpnpncan 13253 Cancellation law for group subtraction. (npncan 8250 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + (𝑌 𝑍)) = (𝑋 𝑍))
 
Theoremgrpnpncan0 13254 Cancellation law for group subtraction (npncan2 8256 analog). (Contributed by AV, 24-Nov-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌) + (𝑌 𝑋)) = 0 )
 
Theoremgrpnnncan2 13255 Cancellation law for group subtraction. (nnncan2 8266 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))
 
Theoremdfgrp3mlem 13256* Lemma for dfgrp3m 13257. (Contributed by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
 
Theoremdfgrp3m 13257* Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
 
Theoremdfgrp3me 13258* Alternate definition of a group as a set with a closed, associative operation, for which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ∧ (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))))
 
Theoremgrplactfval 13259* The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)       (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
 
Theoremgrplactcnv 13260* The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
 
Theoremgrplactf1o 13261* The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴):𝑋1-1-onto𝑋)
 
Theoremgrpsubpropdg 13262 Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
(𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑 → (+g𝐺) = (+g𝐻))    &   (𝜑𝐺𝑉)    &   (𝜑𝐻𝑊)       (𝜑 → (-g𝐺) = (-g𝐻))
 
Theoremgrpsubpropd2 13263* Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑𝐵 = (Base‘𝐻))    &   (𝜑𝐺 ∈ Grp)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))       (𝜑 → (-g𝐺) = (-g𝐻))
 
Theoremgrp1 13264 The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Grp)
 
Theoremgrp1inv 13265 The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
 
Theoremimasgrp2 13266* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅𝑊)    &   ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))    &   (𝜑0𝑉)    &   ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))    &   ((𝜑𝑥𝑉) → 𝑁𝑉)    &   ((𝜑𝑥𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹0 ))       (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasgrp 13267* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅 ∈ Grp)    &    0 = (0g𝑅)       (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasgrpf1 13268 The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑈 ∈ Grp)
 
Theoremqusgrp2 13269* Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑 Er 𝑉)    &   (𝜑𝑅𝑋)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝑉)    &   ((𝜑𝑥𝑉) → ( 0 + 𝑥) 𝑥)    &   ((𝜑𝑥𝑉) → 𝑁𝑉)    &   ((𝜑𝑥𝑉) → (𝑁 + 𝑥) 0 )       (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] = (0g𝑈)))
 
Theoremmhmlem 13270* Lemma for mhmmnd 13272 and ghmgrp 13274. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹𝐴) (𝐹𝐵)))
 
Theoremmhmid 13271* A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Mnd)    &    0 = (0g𝐺)       (𝜑 → (𝐹0 ) = (0g𝐻))
 
Theoremmhmmnd 13272* The image of a monoid 𝐺 under a monoid homomorphism 𝐹 is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Mnd)       (𝜑𝐻 ∈ Mnd)
 
Theoremmhmfmhm 13273* The function fulfilling the conditions of mhmmnd 13272 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Mnd)       (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
 
Theoremghmgrp 13274* The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Grp)       (𝜑𝐻 ∈ Grp)
 
7.2.2  Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element 𝑥(of a monoid) to the power of a nonnegative integer 𝑛 is defined and denoted by 𝑥𝑛. Definition df-mulg 13276, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13162 of the inverse operation invg.

 
Syntaxcmg 13275 Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group.
class .g
 
Definitiondf-mulg 13276* Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
.g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g𝑔), seq1((+g𝑔), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑔)‘(𝑠‘-𝑛))))))
 
Theoremmulgfvalg 13277* Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐼 = (invg𝐺)    &    · = (.g𝐺)       (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
 
Theoremmulgval 13278 Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐼 = (invg𝐺)    &    · = (.g𝐺)    &   𝑆 = seq1( + , (ℕ × {𝑋}))       ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
 
Theoremmulgex 13279 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
(𝐺𝑉 → (.g𝐺) ∈ V)
 
Theoremmulgfng 13280 Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       (𝐺𝑉· Fn (ℤ × 𝐵))
 
Theoremmulg0 13281 Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)       (𝑋𝐵 → (0 · 𝑋) = 0 )
 
Theoremmulgnn 13282 Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    · = (.g𝐺)    &   𝑆 = seq1( + , (ℕ × {𝑋}))       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝑆𝑁))
 
Theoremmulgnngsum 13283* Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
 
Theoremmulgnn0gsum 13284* Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)       ((𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
 
Theoremmulg1 13285 Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       (𝑋𝐵 → (1 · 𝑋) = 𝑋)
 
Theoremmulgnnp1 13286 Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 
Theoremmulg2 13287 Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       (𝑋𝐵 → (2 · 𝑋) = (𝑋 + 𝑋))
 
Theoremmulgnegnn 13288 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulgnn0p1 13289 Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 
Theoremmulgnnsubcl 13290* Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)       ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgnn0subcl 13291* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &    0 = (0g𝐺)    &   (𝜑0𝑆)       ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgsubcl 13292* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &    0 = (0g𝐺)    &   (𝜑0𝑆)    &   𝐼 = (invg𝐺)    &   ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)       ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgnncl 13293 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgnn0cl 13294 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgcl 13295 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgneg 13296 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulgnegneg 13297 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
 
Theoremmulgm1 13298 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
 
Theoremmulgnn0cld 13299 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13294. (Contributed by SN, 1-Feb-2025.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgcld 13300 Deduction associated with mulgcl 13295. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15757
  Copyright terms: Public domain < Previous  Next >