HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvscandxnplusgndx 13201 The slot for the scalar product is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (+g‘ndx)
 
Theoremvscandxnmulrndx 13202 The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (.r‘ndx)
 
Theoremvscandxnscandx 13203 The slot for the scalar product is not the slot for the scalar field in an extensible structure. (Contributed by AV, 18-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (Scalar‘ndx)
 
Theoremvscaslid 13204 Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
 
Theoremlmodstrd 13205 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝑊 Struct ⟨1, 6⟩)
 
Theoremlmodbased 13206 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremlmodplusgd 13207 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑+ = (+g𝑊))
 
Theoremlmodscad 13208 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐹 = (Scalar‘𝑊))
 
Theoremlmodvscad 13209 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑· = ( ·𝑠𝑊))
 
Theoremipndx 13210 Index value of the df-ip 13136 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(·𝑖‘ndx) = 8
 
Theoremipid 13211 Utility theorem: index-independent form of df-ip 13136. (Contributed by Mario Carneiro, 6-Oct-2013.)
·𝑖 = Slot (·𝑖‘ndx)
 
Theoremipslid 13212 Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
(·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
 
Theoremipndxnbasendx 13213 The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(·𝑖‘ndx) ≠ (Base‘ndx)
 
Theoremipndxnplusgndx 13214 The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(·𝑖‘ndx) ≠ (+g‘ndx)
 
Theoremipndxnmulrndx 13215 The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(·𝑖‘ndx) ≠ (.r‘ndx)
 
Theoremslotsdifipndx 13216 The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.)
(( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx))
 
Theoremipsstrd 13217 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐴 Struct ⟨1, 8⟩)
 
Theoremipsbased 13218 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐵 = (Base‘𝐴))
 
Theoremipsaddgd 13219 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑+ = (+g𝐴))
 
Theoremipsmulrd 13220 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑× = (.r𝐴))
 
Theoremipsscad 13221 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝑆 = (Scalar‘𝐴))
 
Theoremipsvscad 13222 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑· = ( ·𝑠𝐴))
 
Theoremipsipd 13223 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐼 = (·𝑖𝐴))
 
Theoremressscag 13224 Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐻 = (𝐺s 𝐴)    &   𝐹 = (Scalar‘𝐺)       ((𝐺𝑋𝐴𝑉) → 𝐹 = (Scalar‘𝐻))
 
Theoremressvscag 13225 ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐻 = (𝐺s 𝐴)    &    · = ( ·𝑠𝐺)       ((𝐺𝑋𝐴𝑉) → · = ( ·𝑠𝐻))
 
Theoremressipg 13226 The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.)
𝐻 = (𝐺s 𝐴)    &    , = (·𝑖𝐺)       ((𝐺𝑋𝐴𝑉) → , = (·𝑖𝐻))
 
Theoremtsetndx 13227 Index value of the df-tset 13137 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(TopSet‘ndx) = 9
 
Theoremtsetid 13228 Utility theorem: index-independent form of df-tset 13137. (Contributed by NM, 20-Oct-2012.)
TopSet = Slot (TopSet‘ndx)
 
Theoremtsetslid 13229 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
(TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
 
Theoremtsetndxnn 13230 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.)
(TopSet‘ndx) ∈ ℕ
 
Theorembasendxlttsetndx 13231 The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(Base‘ndx) < (TopSet‘ndx)
 
Theoremtsetndxnbasendx 13232 The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.)
(TopSet‘ndx) ≠ (Base‘ndx)
 
Theoremtsetndxnplusgndx 13233 The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(TopSet‘ndx) ≠ (+g‘ndx)
 
Theoremtsetndxnmulrndx 13234 The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(TopSet‘ndx) ≠ (.r‘ndx)
 
Theoremtsetndxnstarvndx 13235 The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.)
(TopSet‘ndx) ≠ (*𝑟‘ndx)
 
Theoremslotstnscsi 13236 The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))
 
Theoremtopgrpstrd 13237 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝑊 Struct ⟨1, 9⟩)
 
Theoremtopgrpbasd 13238 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremtopgrpplusgd 13239 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑+ = (+g𝑊))
 
Theoremtopgrptsetd 13240 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐽 = (TopSet‘𝑊))
 
Theoremplendx 13241 Index value of the df-ple 13138 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
(le‘ndx) = 10
 
Theorempleid 13242 Utility theorem: self-referencing, index-independent form of df-ple 13138. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
le = Slot (le‘ndx)
 
Theorempleslid 13243 Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.)
(le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
 
Theoremplendxnn 13244 The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
(le‘ndx) ∈ ℕ
 
Theorembasendxltplendx 13245 The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.)
(Base‘ndx) < (le‘ndx)
 
Theoremplendxnbasendx 13246 The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.)
(le‘ndx) ≠ (Base‘ndx)
 
Theoremplendxnplusgndx 13247 The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(le‘ndx) ≠ (+g‘ndx)
 
Theoremplendxnmulrndx 13248 The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ (.r‘ndx)
 
Theoremplendxnscandx 13249 The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ (Scalar‘ndx)
 
Theoremplendxnvscandx 13250 The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ ( ·𝑠 ‘ndx)
 
Theoremslotsdifplendx 13251 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
 
Theoremocndx 13252 Index value of the df-ocomp 13139 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.)
(oc‘ndx) = 11
 
Theoremocid 13253 Utility theorem: index-independent form of df-ocomp 13139. (Contributed by Mario Carneiro, 25-Oct-2015.)
oc = Slot (oc‘ndx)
 
Theorembasendxnocndx 13254 The slot for the orthocomplementation is not the slot for the base set in an extensible structure. (Contributed by AV, 11-Nov-2024.)
(Base‘ndx) ≠ (oc‘ndx)
 
Theoremplendxnocndx 13255 The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.)
(le‘ndx) ≠ (oc‘ndx)
 
Theoremdsndx 13256 Index value of the df-ds 13140 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(dist‘ndx) = 12
 
Theoremdsid 13257 Utility theorem: index-independent form of df-ds 13140. (Contributed by Mario Carneiro, 23-Dec-2013.)
dist = Slot (dist‘ndx)
 
Theoremdsslid 13258 Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.)
(dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
 
Theoremdsndxnn 13259 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
(dist‘ndx) ∈ ℕ
 
Theorembasendxltdsndx 13260 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(Base‘ndx) < (dist‘ndx)
 
Theoremdsndxnbasendx 13261 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
(dist‘ndx) ≠ (Base‘ndx)
 
Theoremdsndxnplusgndx 13262 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(dist‘ndx) ≠ (+g‘ndx)
 
Theoremdsndxnmulrndx 13263 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(dist‘ndx) ≠ (.r‘ndx)
 
Theoremslotsdnscsi 13264 The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.)
((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx))
 
Theoremdsndxntsetndx 13265 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(dist‘ndx) ≠ (TopSet‘ndx)
 
Theoremslotsdifdsndx 13266 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
 
Theoremunifndx 13267 Index value of the df-unif 13141 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.)
(UnifSet‘ndx) = 13
 
Theoremunifid 13268 Utility theorem: index-independent form of df-unif 13141. (Contributed by Thierry Arnoux, 17-Dec-2017.)
UnifSet = Slot (UnifSet‘ndx)
 
Theoremunifndxnn 13269 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
(UnifSet‘ndx) ∈ ℕ
 
Theorembasendxltunifndx 13270 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(Base‘ndx) < (UnifSet‘ndx)
 
Theoremunifndxnbasendx 13271 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(UnifSet‘ndx) ≠ (Base‘ndx)
 
Theoremunifndxntsetndx 13272 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(UnifSet‘ndx) ≠ (TopSet‘ndx)
 
Theoremslotsdifunifndx 13273 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
 
Theoremhomndx 13274 Index value of the df-hom 13142 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
(Hom ‘ndx) = 14
 
Theoremhomid 13275 Utility theorem: index-independent form of df-hom 13142. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hom = Slot (Hom ‘ndx)
 
Theoremhomslid 13276 Slot property of Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
(Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
 
Theoremccondx 13277 Index value of the df-cco 13143 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
(comp‘ndx) = 15
 
Theoremccoid 13278 Utility theorem: index-independent form of df-cco 13143. (Contributed by Mario Carneiro, 7-Jan-2017.)
comp = Slot (comp‘ndx)
 
Theoremccoslid 13279 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
(comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ)
 
6.1.3  Definition of the structure product
 
Syntaxcrest 13280 Extend class notation with the function returning a subspace topology.
class t
 
Syntaxctopn 13281 Extend class notation with the topology extractor function.
class TopOpen
 
Definitiondf-rest 13282* Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
 
Definitiondf-topn 13283 Define the topology extractor function. This differs from df-tset 13137 when a structure has been restricted using df-iress 13048; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
 
Theoremrestfn 13284 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
t Fn (V × V)
 
Theoremtopnfn 13285 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen Fn V
 
Theoremrestval 13286* The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
 
Theoremelrest 13287* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
 
Theoremelrestr 13288 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
 
Theoremrestid2 13289 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
 
Theoremrestsspw 13290 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽t 𝐴) ⊆ 𝒫 𝐴
 
Theoremrestid 13291 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
 
Theoremtopnvalg 13292 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
 
Theoremtopnidg 13293 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊))
 
Theoremtopnpropgd 13294 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
 
Syntaxctg 13295 Extend class notation with a function that converts a basis to its corresponding topology.
class topGen
 
Syntaxcpt 13296 Extend class notation with a function whose value is a product topology.
class t
 
Syntaxc0g 13297 Extend class notation with group identity element.
class 0g
 
Syntaxcgsu 13298 Extend class notation to include finitely supported group sums.
class Σg
 
Definitiondf-0g 13299* Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-igsum 13300. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
 
Definitiondf-igsum 13300* Define a finite group sum (also called "iterated sum") of a structure.

Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺.

1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity.

2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >