HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempleslid 13201 Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.)
(le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
 
Theoremplendxnn 13202 The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
(le‘ndx) ∈ ℕ
 
Theorembasendxltplendx 13203 The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.)
(Base‘ndx) < (le‘ndx)
 
Theoremplendxnbasendx 13204 The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.)
(le‘ndx) ≠ (Base‘ndx)
 
Theoremplendxnplusgndx 13205 The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(le‘ndx) ≠ (+g‘ndx)
 
Theoremplendxnmulrndx 13206 The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ (.r‘ndx)
 
Theoremplendxnscandx 13207 The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ (Scalar‘ndx)
 
Theoremplendxnvscandx 13208 The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.)
(le‘ndx) ≠ ( ·𝑠 ‘ndx)
 
Theoremslotsdifplendx 13209 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx))
 
Theoremocndx 13210 Index value of the df-ocomp 13097 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.)
(oc‘ndx) = 11
 
Theoremocid 13211 Utility theorem: index-independent form of df-ocomp 13097. (Contributed by Mario Carneiro, 25-Oct-2015.)
oc = Slot (oc‘ndx)
 
Theorembasendxnocndx 13212 The slot for the orthocomplementation is not the slot for the base set in an extensible structure. (Contributed by AV, 11-Nov-2024.)
(Base‘ndx) ≠ (oc‘ndx)
 
Theoremplendxnocndx 13213 The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.)
(le‘ndx) ≠ (oc‘ndx)
 
Theoremdsndx 13214 Index value of the df-ds 13098 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(dist‘ndx) = 12
 
Theoremdsid 13215 Utility theorem: index-independent form of df-ds 13098. (Contributed by Mario Carneiro, 23-Dec-2013.)
dist = Slot (dist‘ndx)
 
Theoremdsslid 13216 Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.)
(dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
 
Theoremdsndxnn 13217 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
(dist‘ndx) ∈ ℕ
 
Theorembasendxltdsndx 13218 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(Base‘ndx) < (dist‘ndx)
 
Theoremdsndxnbasendx 13219 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
(dist‘ndx) ≠ (Base‘ndx)
 
Theoremdsndxnplusgndx 13220 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(dist‘ndx) ≠ (+g‘ndx)
 
Theoremdsndxnmulrndx 13221 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
(dist‘ndx) ≠ (.r‘ndx)
 
Theoremslotsdnscsi 13222 The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.)
((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx))
 
Theoremdsndxntsetndx 13223 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(dist‘ndx) ≠ (TopSet‘ndx)
 
Theoremslotsdifdsndx 13224 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx))
 
Theoremunifndx 13225 Index value of the df-unif 13099 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.)
(UnifSet‘ndx) = 13
 
Theoremunifid 13226 Utility theorem: index-independent form of df-unif 13099. (Contributed by Thierry Arnoux, 17-Dec-2017.)
UnifSet = Slot (UnifSet‘ndx)
 
Theoremunifndxnn 13227 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
(UnifSet‘ndx) ∈ ℕ
 
Theorembasendxltunifndx 13228 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(Base‘ndx) < (UnifSet‘ndx)
 
Theoremunifndxnbasendx 13229 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(UnifSet‘ndx) ≠ (Base‘ndx)
 
Theoremunifndxntsetndx 13230 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
(UnifSet‘ndx) ≠ (TopSet‘ndx)
 
Theoremslotsdifunifndx 13231 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
(((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)))
 
Theoremhomndx 13232 Index value of the df-hom 13100 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
(Hom ‘ndx) = 14
 
Theoremhomid 13233 Utility theorem: index-independent form of df-hom 13100. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hom = Slot (Hom ‘ndx)
 
Theoremhomslid 13234 Slot property of Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
(Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
 
Theoremccondx 13235 Index value of the df-cco 13101 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
(comp‘ndx) = 15
 
Theoremccoid 13236 Utility theorem: index-independent form of df-cco 13101. (Contributed by Mario Carneiro, 7-Jan-2017.)
comp = Slot (comp‘ndx)
 
Theoremccoslid 13237 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
(comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ)
 
6.1.3  Definition of the structure product
 
Syntaxcrest 13238 Extend class notation with the function returning a subspace topology.
class t
 
Syntaxctopn 13239 Extend class notation with the topology extractor function.
class TopOpen
 
Definitiondf-rest 13240* Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
 
Definitiondf-topn 13241 Define the topology extractor function. This differs from df-tset 13095 when a structure has been restricted using df-iress 13006; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
 
Theoremrestfn 13242 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
t Fn (V × V)
 
Theoremtopnfn 13243 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen Fn V
 
Theoremrestval 13244* The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
 
Theoremelrest 13245* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
 
Theoremelrestr 13246 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
 
Theoremrestid2 13247 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
 
Theoremrestsspw 13248 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽t 𝐴) ⊆ 𝒫 𝐴
 
Theoremrestid 13249 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
 
Theoremtopnvalg 13250 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
 
Theoremtopnidg 13251 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊))
 
Theoremtopnpropgd 13252 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
 
Syntaxctg 13253 Extend class notation with a function that converts a basis to its corresponding topology.
class topGen
 
Syntaxcpt 13254 Extend class notation with a function whose value is a product topology.
class t
 
Syntaxc0g 13255 Extend class notation with group identity element.
class 0g
 
Syntaxcgsu 13256 Extend class notation to include finitely supported group sums.
class Σg
 
Definitiondf-0g 13257* Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-igsum 13258. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
 
Definitiondf-igsum 13258* Define a finite group sum (also called "iterated sum") of a structure.

Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺.

1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity.

2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
 
Definitiondf-topgen 13259* Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.)
topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
 
Definitiondf-pt 13260* Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.)
t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
 
Theoremtgval 13261* The topology generated by a basis. See also tgval2 14690 and tgval3 14697. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
 
Theoremtgvalex 13262 The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
(𝐵𝑉 → (topGen‘𝐵) ∈ V)
 
Theoremptex 13263 Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
(𝐹𝑉 → (∏t𝐹) ∈ V)
 
Syntaxcprds 13264 The function constructing structure products.
class Xs
 
Syntaxcpws 13265 The function constructing structure powers.
class s
 
Definitiondf-prds 13266* Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
 
Theoremreldmprds 13267 The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Rel dom Xs
 
Theoremprdsex 13268 Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
((𝑆𝑉𝑅𝑊) → (𝑆Xs𝑅) ∈ V)
 
Theoremimasvalstrd 13269 An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑍)    &   (𝜑,𝑃)    &   (𝜑𝑂𝑄)    &   (𝜑𝐿𝑅)    &   (𝜑𝐷𝐴)       (𝜑𝑈 Struct ⟨1, 12⟩)
 
Theoremprdsvalstrd 13270 Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑍)    &   (𝜑,𝑃)    &   (𝜑𝑂𝑄)    &   (𝜑𝐿𝑅)    &   (𝜑𝐷𝐴)    &   (𝜑𝐻𝑇)    &   (𝜑𝑈)       (𝜑 → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) Struct ⟨1, 15⟩)
 
Theoremprdsvallem 13271* Lemma for prdsval 13272. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13272, dependency on df-hom 13100 removed. (Revised by AV, 13-Oct-2024.)
(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
 
Theoremprdsval 13272* Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
𝑃 = (𝑆Xs𝑅)    &   𝐾 = (Base‘𝑆)    &   (𝜑 → dom 𝑅 = 𝐼)    &   (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))    &   (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))    &   (𝜑× = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))    &   (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))    &   (𝜑, = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))    &   (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))    &   (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})    &   (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))    &   (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))    &   (𝜑 = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)𝐻𝑐), 𝑒 ∈ (𝐻𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))    &   (𝜑𝑆𝑊)    &   (𝜑𝑅𝑍)       (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), ⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})))
 
Theoremprdsbaslemss 13273 Lemma for prdsbas 13275 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
𝑃 = (𝑆Xs𝑅)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅𝑊)    &   𝐴 = (𝐸𝑃)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ∈ ℕ    &   (𝜑𝑇𝑋)    &   (𝜑 → {⟨(𝐸‘ndx), 𝑇⟩} ⊆ 𝑃)       (𝜑𝐴 = 𝑇)
 
Theoremprdssca 13274 Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
𝑃 = (𝑆Xs𝑅)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅𝑊)       (𝜑𝑆 = (Scalar‘𝑃))
 
Theoremprdsbas 13275* Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
𝑃 = (𝑆Xs𝑅)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅𝑊)    &   𝐵 = (Base‘𝑃)    &   (𝜑 → dom 𝑅 = 𝐼)       (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
 
Theoremprdsplusg 13276* Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
𝑃 = (𝑆Xs𝑅)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅𝑊)    &   𝐵 = (Base‘𝑃)    &   (𝜑 → dom 𝑅 = 𝐼)    &    + = (+g𝑃)       (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
 
Theoremprdsmulr 13277* Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
𝑃 = (𝑆Xs𝑅)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅𝑊)    &   𝐵 = (Base‘𝑃)    &   (𝜑 → dom 𝑅 = 𝐼)    &    · = (.r𝑃)       (𝜑· = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
 
Theoremprdsbas2 13278* The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)       (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
 
Theoremprdsbasmpt 13279* A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)       (𝜑 → ((𝑥𝐼𝑈) ∈ 𝐵 ↔ ∀𝑥𝐼 𝑈 ∈ (Base‘(𝑅𝑥))))
 
Theoremprdsbasfn 13280 Points in the structure product are functions; use this with dffn5im 5652 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)    &   (𝜑𝑇𝐵)       (𝜑𝑇 Fn 𝐼)
 
Theoremprdsbasprj 13281 Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)    &   (𝜑𝑇𝐵)    &   (𝜑𝐽𝐼)       (𝜑 → (𝑇𝐽) ∈ (Base‘(𝑅𝐽)))
 
Theoremprdsplusgval 13282* Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &    + = (+g𝑌)       (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
 
Theoremprdsplusgfval 13283 Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &    + = (+g𝑌)    &   (𝜑𝐽𝐼)       (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹𝐽)(+g‘(𝑅𝐽))(𝐺𝐽)))
 
Theoremprdsmulrval 13284* Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &    · = (.r𝑌)       (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))))
 
Theoremprdsmulrfval 13285 Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 Fn 𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &    · = (.r𝑌)    &   (𝜑𝐽𝐼)       (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)))
 
Theoremprdsbas3 13286* The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015.)
𝑌 = (𝑆Xs(𝑥𝐼𝑅))    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑 → ∀𝑥𝐼 𝑅𝑋)    &   𝐾 = (Base‘𝑅)       (𝜑𝐵 = X𝑥𝐼 𝐾)
 
Theoremprdsbasmpt2 13287* A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑌 = (𝑆Xs(𝑥𝐼𝑅))    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑 → ∀𝑥𝐼 𝑅𝑋)    &   𝐾 = (Base‘𝑅)       (𝜑 → ((𝑥𝐼𝑈) ∈ 𝐵 ↔ ∀𝑥𝐼 𝑈𝐾))
 
Theoremprdsbascl 13288* An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015.)
𝑌 = (𝑆Xs(𝑥𝐼𝑅))    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑 → ∀𝑥𝐼 𝑅𝑋)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐹𝐵)       (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾)
 
Definitiondf-pws 13289* Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.)
s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
 
Theorempwsval 13290 Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐹 = (Scalar‘𝑅)       ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
 
Theorempwsbas 13291 Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)       ((𝑅𝑉𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))
 
Theorempwselbasb 13292 Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &   𝑉 = (Base‘𝑌)       ((𝑅𝑊𝐼𝑍) → (𝑋𝑉𝑋:𝐼𝐵))
 
Theorempwselbas 13293 An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &   𝑉 = (Base‘𝑌)    &   (𝜑𝑅𝑊)    &   (𝜑𝐼𝑍)    &   (𝜑𝑋𝑉)       (𝜑𝑋:𝐼𝐵)
 
Theorempwsplusgval 13294 Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑅𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &    + = (+g𝑅)    &    = (+g𝑌)       (𝜑 → (𝐹 𝐺) = (𝐹𝑓 + 𝐺))
 
Theorempwsmulrval 13295 Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝑅𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &    · = (.r𝑅)    &    = (.r𝑌)       (𝜑 → (𝐹 𝐺) = (𝐹𝑓 · 𝐺))
 
Theorempwsdiagel 13296 Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑌)       (((𝑅𝑉𝐼𝑊) ∧ 𝐴𝐵) → (𝐼 × {𝐴}) ∈ 𝐶)
 
Theorempwssnf1o 13297* Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝑌 = (𝑅s {𝐼})    &   𝐵 = (Base‘𝑅)    &   𝐹 = (𝑥𝐵 ↦ ({𝐼} × {𝑥}))    &   𝐶 = (Base‘𝑌)       ((𝑅𝑉𝐼𝑊) → 𝐹:𝐵1-1-onto𝐶)
 
6.1.4  Definition of the structure quotient
 
Syntaxcimas 13298 Image structure function.
class s
 
Syntaxcqus 13299 Quotient structure function.
class /s
 
Syntaxcxps 13300 Binary product structure function.
class ×s
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >