ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-usgren GIF version

Definition df-usgren 15911
Description: Define the class of all undirected simple graphs (without loops). An undirected simple graph is a special undirected simple pseudograph, consisting of a set 𝑣 (of "vertices") and an injective (one-to-one) function 𝑒 (representing (indexed) "edges") into subsets of 𝑣 of cardinality two, representing the two vertices incident to the edge. In contrast to an undirected simple pseudograph, an undirected simple graph has no loops (edges connecting a vertex with itself). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Assertion
Ref Expression
df-usgren USGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-usgren
StepHypRef Expression
1 cusgr 15909 . 2 class USGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1372 . . . . . . 7 class 𝑒
43cdm 4694 . . . . . 6 class dom 𝑒
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1372 . . . . . . . 8 class 𝑥
7 c2o 6521 . . . . . . . 8 class 2o
8 cen 6850 . . . . . . . 8 class
96, 7, 8wbr 4060 . . . . . . 7 wff 𝑥 ≈ 2o
10 vv . . . . . . . . 9 setvar 𝑣
1110cv 1372 . . . . . . . 8 class 𝑣
1211cpw 3627 . . . . . . 7 class 𝒫 𝑣
139, 5, 12crab 2490 . . . . . 6 class {𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
144, 13, 3wf1 5288 . . . . 5 wff 𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
15 vg . . . . . . 7 setvar 𝑔
1615cv 1372 . . . . . 6 class 𝑔
17 ciedg 15773 . . . . . 6 class iEdg
1816, 17cfv 5291 . . . . 5 class (iEdg‘𝑔)
1914, 2, 18wsbc 3006 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
20 cvtx 15772 . . . . 5 class Vtx
2116, 20cfv 5291 . . . 4 class (Vtx‘𝑔)
2219, 10, 21wsbc 3006 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}
2322, 15cab 2193 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
241, 23wceq 1373 1 wff USGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
Colors of variables: wff set class
This definition is referenced by:  isusgren  15913
  Copyright terms: Public domain W3C validator