ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isusgren GIF version

Theorem isusgren 15913
Description: The property of being a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
isuspgr.v 𝑉 = (Vtx‘𝐺)
isuspgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isusgren (𝐺𝑈 → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isusgren
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-usgren 15911 . . 3 USGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
21eleq2i 2274 . 2 (𝐺 ∈ USGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}})
3 fveq2 5600 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuspgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2258 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 4900 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2211 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 4899 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2256 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 5600 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuspgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2258 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 3632 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413rabeqdv 2771 . . . 4 ( = 𝐺 → {𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o})
155, 9, 14f1eq123d 5537 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
16 vtxex 15778 . . . . . . 7 (𝑔 ∈ V → (Vtx‘𝑔) ∈ V)
1716elv 2781 . . . . . 6 (Vtx‘𝑔) ∈ V
1817a1i 9 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
19 fveq2 5600 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
20 iedgex 15779 . . . . . . . 8 (𝑔 ∈ V → (iEdg‘𝑔) ∈ V)
2120elv 2781 . . . . . . 7 (iEdg‘𝑔) ∈ V
2221a1i 9 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
23 fveq2 5600 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2423adantr 276 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
25 simpr 110 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2625dmeqd 4900 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
27 pweq 3630 . . . . . . . . 9 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2827ad2antlr 489 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2928rabeqdv 2771 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o})
3025, 26, 29f1eq123d 5537 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o}))
3122, 24, 30sbcied2 3044 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o}))
3218, 19, 31sbcied2 3044 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o}))
3332cbvabv 2332 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ 𝒫 (Vtx‘) ∣ 𝑥 ≈ 2o}}
3415, 33elab2g 2928 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
352, 34bitrid 192 1 (𝐺𝑈 → (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉𝑥 ≈ 2o}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  {cab 2193  {crab 2490  Vcvv 2777  [wsbc 3006  𝒫 cpw 3627   class class class wbr 4060  dom cdm 4694  1-1wf1 5288  cfv 5291  2oc2o 6521  cen 6850  Vtxcvtx 15772  iEdgciedg 15773  USGraphcusgr 15909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-f1 5296  df-fo 5297  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-usgren 15911
This theorem is referenced by:  usgrfen  15915  isusgropen  15920  ausgrusgrben  15923  ausgrusgrien  15926  usgruspgr  15938  usgrumgruspgr  15940  usgruspgrben  15941  usgrislfuspgrdom  15945
  Copyright terms: Public domain W3C validator