Detailed syntax breakdown of Definition df-uspgren
| Step | Hyp | Ref
| Expression |
| 1 | | cuspgr 15908 |
. 2
class
USPGraph |
| 2 | | ve |
. . . . . . . 8
setvar 𝑒 |
| 3 | 2 | cv 1372 |
. . . . . . 7
class 𝑒 |
| 4 | 3 | cdm 4694 |
. . . . . 6
class dom 𝑒 |
| 5 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 6 | 5 | cv 1372 |
. . . . . . . . 9
class 𝑥 |
| 7 | | c1o 6520 |
. . . . . . . . 9
class
1o |
| 8 | | cen 6850 |
. . . . . . . . 9
class
≈ |
| 9 | 6, 7, 8 | wbr 4060 |
. . . . . . . 8
wff 𝑥 ≈
1o |
| 10 | | c2o 6521 |
. . . . . . . . 9
class
2o |
| 11 | 6, 10, 8 | wbr 4060 |
. . . . . . . 8
wff 𝑥 ≈
2o |
| 12 | 9, 11 | wo 710 |
. . . . . . 7
wff (𝑥 ≈ 1o ∨
𝑥 ≈
2o) |
| 13 | | vv |
. . . . . . . . 9
setvar 𝑣 |
| 14 | 13 | cv 1372 |
. . . . . . . 8
class 𝑣 |
| 15 | 14 | cpw 3627 |
. . . . . . 7
class 𝒫
𝑣 |
| 16 | 12, 5, 15 | crab 2490 |
. . . . . 6
class {𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)} |
| 17 | 4, 16, 3 | wf1 5288 |
. . . . 5
wff 𝑒:dom 𝑒–1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)} |
| 18 | | vg |
. . . . . . 7
setvar 𝑔 |
| 19 | 18 | cv 1372 |
. . . . . 6
class 𝑔 |
| 20 | | ciedg 15773 |
. . . . . 6
class
iEdg |
| 21 | 19, 20 | cfv 5291 |
. . . . 5
class
(iEdg‘𝑔) |
| 22 | 17, 2, 21 | wsbc 3006 |
. . . 4
wff
[(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)} |
| 23 | | cvtx 15772 |
. . . . 5
class
Vtx |
| 24 | 19, 23 | cfv 5291 |
. . . 4
class
(Vtx‘𝑔) |
| 25 | 22, 13, 24 | wsbc 3006 |
. . 3
wff
[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)} |
| 26 | 25, 18 | cab 2193 |
. 2
class {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}} |
| 27 | 1, 26 | wceq 1373 |
1
wff USPGraph =
{𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ 𝒫 𝑣 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}} |