ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-uspgren Unicode version

Definition df-uspgren 15910
Description: Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph or a special undirected simple hypergraph, consisting of a set  v (of "vertices") and an injective (one-to-one) function  e (representing (indexed) "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by Jim Kingdon, 15-Jan-2026.)
Assertion
Ref Expression
df-uspgren  |- USPGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
Distinct variable group:    e, g, v, x

Detailed syntax breakdown of Definition df-uspgren
StepHypRef Expression
1 cuspgr 15908 . 2  class USPGraph
2 ve . . . . . . . 8  setvar  e
32cv 1372 . . . . . . 7  class  e
43cdm 4694 . . . . . 6  class  dom  e
5 vx . . . . . . . . . 10  setvar  x
65cv 1372 . . . . . . . . 9  class  x
7 c1o 6520 . . . . . . . . 9  class  1o
8 cen 6850 . . . . . . . . 9  class  ~~
96, 7, 8wbr 4060 . . . . . . . 8  wff  x  ~~  1o
10 c2o 6521 . . . . . . . . 9  class  2o
116, 10, 8wbr 4060 . . . . . . . 8  wff  x  ~~  2o
129, 11wo 710 . . . . . . 7  wff  ( x 
~~  1o  \/  x  ~~  2o )
13 vv . . . . . . . . 9  setvar  v
1413cv 1372 . . . . . . . 8  class  v
1514cpw 3627 . . . . . . 7  class  ~P v
1612, 5, 15crab 2490 . . . . . 6  class  { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
174, 16, 3wf1 5288 . . . . 5  wff  e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
18 vg . . . . . . 7  setvar  g
1918cv 1372 . . . . . 6  class  g
20 ciedg 15773 . . . . . 6  class iEdg
2119, 20cfv 5291 . . . . 5  class  (iEdg `  g )
2217, 2, 21wsbc 3006 . . . 4  wff  [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
23 cvtx 15772 . . . . 5  class Vtx
2419, 23cfv 5291 . . . 4  class  (Vtx `  g )
2522, 13, 24wsbc 3006 . . 3  wff  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) }
2625, 18cab 2193 . 2  class  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
271, 26wceq 1373 1  wff USPGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e -1-1-> {
x  e.  ~P v  |  ( x  ~~  1o  \/  x  ~~  2o ) } }
Colors of variables: wff set class
This definition is referenced by:  isuspgren  15912
  Copyright terms: Public domain W3C validator