ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xms GIF version

Definition df-xms 12989
Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
df-xms ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}

Detailed syntax breakdown of Definition df-xms
StepHypRef Expression
1 cxms 12986 . 2 class ∞MetSp
2 vf . . . . . 6 setvar 𝑓
32cv 1342 . . . . 5 class 𝑓
4 ctopn 12557 . . . . 5 class TopOpen
53, 4cfv 5188 . . . 4 class (TopOpen‘𝑓)
6 cds 12466 . . . . . . 7 class dist
73, 6cfv 5188 . . . . . 6 class (dist‘𝑓)
8 cbs 12394 . . . . . . . 8 class Base
93, 8cfv 5188 . . . . . . 7 class (Base‘𝑓)
109, 9cxp 4602 . . . . . 6 class ((Base‘𝑓) × (Base‘𝑓))
117, 10cres 4606 . . . . 5 class ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))
12 cmopn 12635 . . . . 5 class MetOpen
1311, 12cfv 5188 . . . 4 class (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))
145, 13wceq 1343 . . 3 wff (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))
15 ctps 12678 . . 3 class TopSp
1614, 2, 15crab 2448 . 2 class {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
171, 16wceq 1343 1 wff ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
Colors of variables: wff set class
This definition is referenced by:  isxms  13101
  Copyright terms: Public domain W3C validator