Detailed syntax breakdown of Definition df-xms
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cxms 14572 | 
. 2
class
∞MetSp | 
| 2 |   | vf | 
. . . . . 6
setvar 𝑓 | 
| 3 | 2 | cv 1363 | 
. . . . 5
class 𝑓 | 
| 4 |   | ctopn 12911 | 
. . . . 5
class
TopOpen | 
| 5 | 3, 4 | cfv 5258 | 
. . . 4
class
(TopOpen‘𝑓) | 
| 6 |   | cds 12764 | 
. . . . . . 7
class
dist | 
| 7 | 3, 6 | cfv 5258 | 
. . . . . 6
class
(dist‘𝑓) | 
| 8 |   | cbs 12678 | 
. . . . . . . 8
class
Base | 
| 9 | 3, 8 | cfv 5258 | 
. . . . . . 7
class
(Base‘𝑓) | 
| 10 | 9, 9 | cxp 4661 | 
. . . . . 6
class
((Base‘𝑓)
× (Base‘𝑓)) | 
| 11 | 7, 10 | cres 4665 | 
. . . . 5
class
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓))) | 
| 12 |   | cmopn 14097 | 
. . . . 5
class
MetOpen | 
| 13 | 11, 12 | cfv 5258 | 
. . . 4
class
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) | 
| 14 | 5, 13 | wceq 1364 | 
. . 3
wff
(TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) | 
| 15 |   | ctps 14266 | 
. . 3
class
TopSp | 
| 16 | 14, 2, 15 | crab 2479 | 
. 2
class {𝑓 ∈ TopSp ∣
(TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | 
| 17 | 1, 16 | wceq 1364 | 
1
wff
∞MetSp = {𝑓
∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |