Theorem List for Intuitionistic Logic Explorer - 13901-14000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | isdomn 13901* |
Expand definition of a domain. (Contributed by Mario Carneiro,
28-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| |
| Theorem | domnnzr 13902 |
A domain is a nonzero ring. (Contributed by Mario Carneiro,
28-Mar-2015.)
|
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| |
| Theorem | domnring 13903 |
A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
|
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| |
| Theorem | domneq0 13904 |
In a domain, a product is zero iff it has a zero factor. (Contributed
by Mario Carneiro, 28-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| |
| Theorem | domnmuln0 13905 |
In a domain, a product of nonzero elements is nonzero. (Contributed by
Mario Carneiro, 6-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| |
| Theorem | opprdomnbg 13906 |
A class is a domain if and only if its opposite is a domain,
biconditional form of opprdomn 13907. (Contributed by SN, 15-Jun-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn)) |
| |
| Theorem | opprdomn 13907 |
The opposite of a domain is also a domain. (Contributed by Mario
Carneiro, 15-Jun-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Domn → 𝑂 ∈ Domn) |
| |
| Theorem | isidom 13908 |
An integral domain is a commutative domain. (Contributed by Mario
Carneiro, 17-Jun-2015.)
|
| ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| |
| Theorem | idomdomd 13909 |
An integral domain is a domain. (Contributed by Thierry Arnoux,
22-Mar-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ Domn) |
| |
| Theorem | idomcringd 13910 |
An integral domain is a commutative ring with unity. (Contributed by
Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) |
| |
| Theorem | idomringd 13911 |
An integral domain is a ring. (Contributed by Thierry Arnoux,
22-Mar-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) |
| |
| 7.4 Division rings and
fields
|
| |
| 7.4.1 Ring apartness
|
| |
| Syntax | capr 13912 |
Extend class notation with ring apartness.
|
| class #r |
| |
| Definition | df-apr 13913* |
The relation between elements whose difference is invertible, which for
a local ring is an apartness relation by aprap 13918. (Contributed by Jim
Kingdon, 13-Feb-2025.)
|
| ⊢ #r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g‘𝑤)𝑦) ∈ (Unit‘𝑤))}) |
| |
| Theorem | aprval 13914 |
Expand Definition df-apr 13913. (Contributed by Jim Kingdon,
17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → − =
(-g‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 − 𝑌) ∈ 𝑈)) |
| |
| Theorem | aprirr 13915 |
The apartness relation given by df-apr 13913 for a nonzero ring is
irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) ⇒ ⊢ (𝜑 → ¬ 𝑋 # 𝑋) |
| |
| Theorem | aprsym 13916 |
The apartness relation given by df-apr 13913 for a ring is symmetric.
(Contributed by Jim Kingdon, 17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| |
| Theorem | aprcotr 13917 |
The apartness relation given by df-apr 13913 for a local ring is
cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) |
| |
| Theorem | aprap 13918 |
The relation given by df-apr 13913 for a local ring is an apartness
relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
|
| ⊢ (𝑅 ∈ LRing →
(#r‘𝑅) Ap
(Base‘𝑅)) |
| |
| 7.5 Left modules
|
| |
| 7.5.1 Definition and basic
properties
|
| |
| Syntax | clmod 13919 |
Extend class notation with class of all left modules.
|
| class LMod |
| |
| Syntax | cscaf 13920 |
The functionalization of the scalar multiplication operation.
|
| class
·sf |
| |
| Definition | df-lmod 13921* |
Define the class of all left modules, which are generalizations of left
vector spaces. A left module over a ring is an (Abelian) group
(vectors) together with a ring (scalars) and a left scalar product
connecting them. (Contributed by NM, 4-Nov-2013.)
|
| ⊢ LMod = {𝑔 ∈ Grp ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
| |
| Definition | df-scaf 13922* |
Define the functionalization of the ·𝑠 operator. This restricts
the
value of ·𝑠 to
the stated domain, which is necessary when working
with restricted structures, whose operations may be defined on a larger
set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ ·sf =
(𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
| |
| Theorem | islmod 13923* |
The predicate "is a left module". (Contributed by NM, 4-Nov-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
| |
| Theorem | lmodlema 13924 |
Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) |
| |
| Theorem | islmodd 13925* |
Properties that determine a left module. See note in isgrpd2 13223
regarding the 𝜑 on hypotheses that name structure
components.
(Contributed by Mario Carneiro, 22-Jun-2014.)
|
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ =
(+g‘𝐹)) & ⊢ (𝜑 → × =
(.r‘𝐹)) & ⊢ (𝜑 → 1 =
(1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) |
| |
| Theorem | lmodgrp 13926 |
A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by
Mario Carneiro, 25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| |
| Theorem | lmodring 13927 |
The scalar component of a left module is a ring. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| |
| Theorem | lmodfgrp 13928 |
The scalar component of a left module is an additive group.
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| |
| Theorem | lmodgrpd 13929 |
A left module is a group. (Contributed by SN, 16-May-2024.)
|
| ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) |
| |
| Theorem | lmodbn0 13930 |
The base set of a left module is nonempty. It is also inhabited (by
lmod0vcl 13949). (Contributed by NM, 8-Dec-2013.)
(Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodacl 13931 |
Closure of ring addition for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ + =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodmcl 13932 |
Closure of ring multiplication for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodsn0 13933 |
The set of scalars in a left module is nonempty. It is also inhabited,
by lmod0cl 13946. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodvacl 13934 |
Closure of vector addition for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodass 13935 |
Left module vector sum is associative. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| |
| Theorem | lmodlcan 13936 |
Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | lmodvscl 13937 |
Closure of scalar product for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| |
| Theorem | scaffvalg 13938* |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| |
| Theorem | scafvalg 13939 |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
| |
| Theorem | scafeqg 13940 |
If the scalar multiplication operation is already a function, the
functionalization of it is equal to the original operation.
(Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = ·
) |
| |
| Theorem | scaffng 13941 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| |
| Theorem | lmodscaf 13942 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| |
| Theorem | lmodvsdi 13943 |
Distributive law for scalar product (left-distributivity). (Contributed
by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| |
| Theorem | lmodvsdir 13944 |
Distributive law for scalar product (right-distributivity).
(Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro,
22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| |
| Theorem | lmodvsass 13945 |
Associative law for scalar product. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ × =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| |
| Theorem | lmod0cl 13946 |
The ring zero in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| |
| Theorem | lmod1cl 13947 |
The ring unity in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
| |
| Theorem | lmodvs1 13948 |
Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| |
| Theorem | lmod0vcl 13949 |
The zero vector is a vector. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| |
| Theorem | lmod0vlid 13950 |
Left identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| |
| Theorem | lmod0vrid 13951 |
Right identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
| |
| Theorem | lmod0vid 13952 |
Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM, 9-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| |
| Theorem | lmod0vs 13953 |
Zero times a vector is the zero vector. Equation 1a of [Kreyszig]
p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑂 = (0g‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| |
| Theorem | lmodvs0 13954 |
Anything times the zero vector is the zero vector. Equation 1b of
[Kreyszig] p. 51. (Contributed by NM,
12-Jan-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| |
| Theorem | lmodvsmmulgdi 13955 |
Distributive law for a group multiple of a scalar multiplication.
(Contributed by AV, 2-Sep-2019.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ↑ =
(.g‘𝑊)
& ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) |
| |
| Theorem | lmodfopnelem1 13956 |
Lemma 1 for lmodfopne 13958. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| |
| Theorem | lmodfopnelem2 13957 |
Lemma 2 for lmodfopne 13958. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| |
| Theorem | lmodfopne 13958 |
The (functionalized) operations of a left module (over a nonzero ring)
cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV,
2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ ·
) |
| |
| Theorem | lcomf 13959 |
A linear-combination sum is a function. (Contributed by Stefan O'Rear,
28-Feb-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾)
& ⊢ (𝜑 → 𝐻:𝐼⟶𝐵)
& ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
| |
| Theorem | lmodvnegcl 13960 |
Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) |
| |
| Theorem | lmodvnegid 13961 |
Addition of a vector with its negative. (Contributed by NM,
18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| |
| Theorem | lmodvneg1 13962 |
Minus 1 times a vector is the negative of the vector. Equation 2 of
[Kreyszig] p. 51. (Contributed by NM,
18-Apr-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| |
| Theorem | lmodvsneg 13963 |
Multiplication of a vector by a negated scalar. (Contributed by Stefan
O'Rear, 28-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| |
| Theorem | lmodvsubcl 13964 |
Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodcom 13965 |
Left module vector sum is commutative. (Contributed by Gérard
Lang, 25-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | lmodabl 13966 |
A left module is an abelian group (of vectors, under addition).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| |
| Theorem | lmodcmn 13967 |
A left module is a commutative monoid under addition. (Contributed by
NM, 7-Jan-2015.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) |
| |
| Theorem | lmodnegadd 13968 |
Distribute negation through addition of scalar products. (Contributed
by NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝑅 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑅)
& ⊢ 𝐼 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| |
| Theorem | lmod4 13969 |
Commutative/associative law for left module vector sum. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈))) |
| |
| Theorem | lmodvsubadd 13970 |
Relationship between vector subtraction and addition. (Contributed by
NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | lmodvaddsub4 13971 |
Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) |
| |
| Theorem | lmodvpncan 13972 |
Addition/subtraction cancellation law for vectors. (Contributed by NM,
16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | lmodvnpcan 13973 |
Cancellation law for vector subtraction (Contributed by NM,
19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | lmodvsubval2 13974 |
Value of vector subtraction in terms of addition. (Contributed by NM,
31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
| |
| Theorem | lmodsubvs 13975 |
Subtraction of a scalar product in terms of addition. (Contributed by
NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| |
| Theorem | lmodsubdi 13976 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |
| |
| Theorem | lmodsubdir 13977 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (-g‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| |
| Theorem | lmodsubeq0 13978 |
If the difference between two vectors is zero, they are equal.
(Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | lmodsubid 13979 |
Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉) → (𝐴 − 𝐴) = 0 ) |
| |
| Theorem | lmodprop2d 13980* |
If two structures have the same components (properties), one is a left
module iff the other one is. This version of lmodpropd 13981 also breaks up
the components of the scalar ring. (Contributed by Mario Carneiro,
27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | lmodpropd 13981* |
If two structures have the same components (properties), one is a left
module iff the other one is. (Contributed by Mario Carneiro,
8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | rmodislmodlem 13982* |
Lemma for rmodislmod 13983. This is the part of the proof of rmodislmod 13983
which requires the scalar ring to be commutative. (Contributed by AV,
3-Dec-2021.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) |
| |
| Theorem | rmodislmod 13983* |
The right module 𝑅 induces a left module 𝐿 by
replacing the
scalar multiplication with a reversed multiplication if the scalar ring
is commutative. The hypothesis "rmodislmod.r" is a definition
of a
right module analogous to Definition df-lmod 13921 of a left module, see
also islmod 13923. (Contributed by AV, 3-Dec-2021.) (Proof
shortened by
AV, 18-Oct-2024.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) |
| |
| 7.5.2 Subspaces and spans in a left
module
|
| |
| Syntax | clss 13984 |
Extend class notation with linear subspaces of a left module or left
vector space.
|
| class LSubSp |
| |
| Definition | df-lssm 13985* |
A linear subspace of a left module or left vector space is an inhabited
(in contrast to non-empty for non-intuitionistic logic) subset of the
base set of the left-module/vector space with a closure condition on
vector addition and scalar multiplication. (Contributed by NM,
8-Dec-2013.)
|
| ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
| |
| Theorem | lssex 13986 |
Existence of a linear subspace. (Contributed by Jim Kingdon,
27-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| |
| Theorem | lssmex 13987 |
If a linear subspace is inhabited, the class it is built from is a set.
(Contributed by Jim Kingdon, 28-Apr-2025.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| |
| Theorem | lsssetm 13988* |
The set of all (not necessarily closed) linear subspaces of a left
module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario Carneiro, 15-Jul-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
| |
| Theorem | islssm 13989* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
| |
| Theorem | islssmg 13990* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.) Use islssm 13989 instead. (New usage is discouraged.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
| |
| Theorem | islssmd 13991* |
Properties that determine a subspace of a left module or left vector
space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉)
& ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| |
| Theorem | lssssg 13992 |
A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| |
| Theorem | lsselg 13993 |
A subspace member is a vector. (Contributed by NM, 11-Jan-2014.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| |
| Theorem | lss1 13994 |
The set of vectors in a left module is a subspace. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| |
| Theorem | lssuni 13995 |
The union of all subspaces is the vector space. (Contributed by NM,
13-Mar-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| |
| Theorem | lssclg 13996 |
Closure property of a subspace. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvacl 13997 |
Closure of vector addition in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvsubcl 13998 |
Closure of vector subtraction in a subspace. (Contributed by NM,
31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvancl1 13999 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 14-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvancl2 14000 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 20-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈) |