HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheorembdcnulALT 13901 Alternate proof of bdcnul 13900. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 13879, or use the corresponding characterizations of its elements followed by bdelir 13882. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
BOUNDED
 
Theorembdeq0 13902 Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
BOUNDED 𝑥 = ∅
 
Theorembj-bd0el 13903 Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.)
BOUNDED ∅ ∈ 𝑥
 
Theorembdcpw 13904 The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝒫 𝐴
 
Theorembdcsn 13905 The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥}
 
Theorembdcpr 13906 The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥, 𝑦}
 
Theorembdctp 13907 The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥, 𝑦, 𝑧}
 
Theorembdsnss 13908* Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED {𝑥} ⊆ 𝐴
 
Theorembdvsn 13909* Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥 = {𝑦}
 
Theorembdop 13910 The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
BOUNDED𝑥, 𝑦
 
Theorembdcuni 13911 The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
BOUNDED 𝑥
 
Theorembdcint 13912 The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥
 
Theorembdciun 13913* The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝑦 𝐴
 
Theorembdciin 13914* The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝑦 𝐴
 
Theorembdcsuc 13915 The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED suc 𝑥
 
Theorembdeqsuc 13916* Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
BOUNDED 𝑥 = suc 𝑦
 
Theorembj-bdsucel 13917 Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.)
BOUNDED suc 𝑥𝑦
 
Theorembdcriota 13918* A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
BOUNDED 𝜑    &   ∃!𝑥𝑦 𝜑       BOUNDED (𝑥𝑦 𝜑)
 
12.2.9  CZF: Bounded separation

In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory.

 
Axiomax-bdsep 13919* Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4107. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsep1 13920* Version of ax-bdsep 13919 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsep2 13921* Version of ax-bdsep 13919 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 13920 when sufficient. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsepnft 13922* Closed form of bdsepnf 13923. Version of ax-bdsep 13919 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 13920 when sufficient. (Contributed by BJ, 19-Oct-2019.)
BOUNDED 𝜑       (∀𝑥𝑏𝜑 → ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑)))
 
Theorembdsepnf 13923* Version of ax-bdsep 13919 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 13924. Use bdsep1 13920 when sufficient. (Contributed by BJ, 5-Oct-2019.)
𝑏𝜑    &   BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
TheorembdsepnfALT 13924* Alternate proof of bdsepnf 13923, not using bdsepnft 13922. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑏𝜑    &   BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdzfauscl 13925* Closed form of the version of zfauscl 4109 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
BOUNDED 𝜑       (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
 
Theorembdbm1.3ii 13926* Bounded version of bm1.3ii 4110. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝑦(𝜑𝑦𝑥)       𝑥𝑦(𝑦𝑥𝜑)
 
Theorembj-axemptylem 13927* Lemma for bj-axempty 13928 and bj-axempty2 13929. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4115 instead. (New usage is discouraged.)
𝑥𝑦(𝑦𝑥 → ⊥)
 
Theorembj-axempty 13928* Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4114. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4115 instead. (New usage is discouraged.)
𝑥𝑦𝑥
 
Theorembj-axempty2 13929* Axiom of the empty set from bounded separation, alternate version to bj-axempty 13928. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4115 instead. (New usage is discouraged.)
𝑥𝑦 ¬ 𝑦𝑥
 
Theorembj-nalset 13930* nalset 4119 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ ∃𝑥𝑦 𝑦𝑥
 
Theorembj-vprc 13931 vprc 4121 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ V ∈ V
 
Theorembj-nvel 13932 nvel 4122 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ V ∈ 𝐴
 
Theorembj-vnex 13933 vnex 4120 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ ∃𝑥 𝑥 = V
 
Theorembdinex1 13934 Bounded version of inex1 4123. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵    &   𝐴 ∈ V       (𝐴𝐵) ∈ V
 
Theorembdinex2 13935 Bounded version of inex2 4124. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵    &   𝐴 ∈ V       (𝐵𝐴) ∈ V
 
Theorembdinex1g 13936 Bounded version of inex1g 4125. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵       (𝐴𝑉 → (𝐴𝐵) ∈ V)
 
Theorembdssex 13937 Bounded version of ssex 4126. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   𝐵 ∈ V       (𝐴𝐵𝐴 ∈ V)
 
Theorembdssexi 13938 Bounded version of ssexi 4127. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   𝐵 ∈ V    &   𝐴𝐵       𝐴 ∈ V
 
Theorembdssexg 13939 Bounded version of ssexg 4128. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theorembdssexd 13940 Bounded version of ssexd 4129. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝜑𝐵𝐶)    &   (𝜑𝐴𝐵)    &   BOUNDED 𝐴       (𝜑𝐴 ∈ V)
 
Theorembdrabexg 13941* Bounded version of rabexg 4132. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   BOUNDED 𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theorembj-inex 13942 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theorembj-intexr 13943 intexr 4136 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
( 𝐴 ∈ V → 𝐴 ≠ ∅)
 
Theorembj-intnexr 13944 intnexr 4137 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
( 𝐴 = V → ¬ 𝐴 ∈ V)
 
Theorembj-zfpair2 13945 Proof of zfpair2 4195 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
{𝑥, 𝑦} ∈ V
 
Theorembj-prexg 13946 Proof of prexg 4196 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
 
Theorembj-snexg 13947 snexg 4170 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → {𝐴} ∈ V)
 
Theorembj-snex 13948 snex 4171 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V       {𝐴} ∈ V
 
Theorembj-sels 13949* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
(𝐴𝑉 → ∃𝑥 𝐴𝑥)
 
Theorembj-axun2 13950* axun2 4420 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
 
Theorembj-uniex2 13951* uniex2 4421 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
𝑦 𝑦 = 𝑥
 
Theorembj-uniex 13952 uniex 4422 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V        𝐴 ∈ V
 
Theorembj-uniexg 13953 uniexg 4424 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 𝐴 ∈ V)
 
Theorembj-unex 13954 unex 4426 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐵) ∈ V
 
Theorembdunexb 13955 Bounded version of unexb 4427. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   BOUNDED 𝐵       ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
 
Theorembj-unexg 13956 unexg 4428 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theorembj-sucexg 13957 sucexg 4482 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → suc 𝐴 ∈ V)
 
Theorembj-sucex 13958 sucex 4483 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V       suc 𝐴 ∈ V
 
12.2.9.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 13959 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
BOUNDED 𝜑       DECID 𝜑
 
Theorembj-d0clsepcl 13960 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
DECID 𝜑
 
12.2.9.2  Inductive classes and the class of natural number ordinals
 
Syntaxwind 13961 Syntax for inductive classes.
wff Ind 𝐴
 
Definitiondf-bj-ind 13962* Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
(Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
 
Theorembj-indsuc 13963 A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
(Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
 
Theorembj-indeq 13964 Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
(𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵))
 
Theorembj-bdind 13965 Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.)
BOUNDED Ind 𝑥
 
Theorembj-indint 13966* The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Ind {𝑥𝐴 ∣ Ind 𝑥}
 
Theorembj-indind 13967* If 𝐴 is inductive and 𝐵 is "inductive in 𝐴", then (𝐴𝐵) is inductive. (Contributed by BJ, 25-Oct-2020.)
((Ind 𝐴 ∧ (∅ ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑥𝐵 → suc 𝑥𝐵))) → Ind (𝐴𝐵))
 
Theorembj-dfom 13968 Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
ω = {𝑥 ∣ Ind 𝑥}
 
Theorembj-omind 13969 ω is an inductive class. (Contributed by BJ, 30-Nov-2019.)
Ind ω
 
Theorembj-omssind 13970 ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
 
Theorembj-ssom 13971* A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
 
Theorembj-om 13972* A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
 
Theorembj-2inf 13973* Two formulations of the axiom of infinity (see ax-infvn 13976 and bj-omex 13977) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
 
12.2.9.3  The first three Peano postulates

The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4578 and peano3 4580 already show this. In this section, we prove bj-peano2 13974 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms.

 
Theorembj-peano2 13974 Constructive proof of peano2 4579. Temporary note: another possibility is to simply replace sucexg 4482 with bj-sucexg 13957 in the proof of peano2 4579. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → suc 𝐴 ∈ ω)
 
Theorempeano5set 13975* Version of peano5 4582 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
 
12.2.10  CZF: Infinity

In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements.

 
12.2.10.1  The set of natural number ordinals

In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 13976) and deduce that the class ω of natural number ordinals is a set (bj-omex 13977).

 
Axiomax-infvn 13976* Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4572) from which one then proves, using full separation, that the wanted set exists (omex 4577). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.)
𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))
 
Theorembj-omex 13977 Proof of omex 4577 from ax-infvn 13976. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.)
ω ∈ V
 
12.2.10.2  Peano's fifth postulate

In this section, we give constructive proofs of two versions of Peano's fifth postulate.

 
Theorembdpeano5 13978* Bounded version of peano5 4582. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
 
Theoremspeano5 13979* Version of peano5 4582 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
 
12.2.10.3  Bounded induction and Peano's fourth postulate

In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers.

 
Theoremfindset 13980* Bounded induction (principle of induction when 𝐴 is assumed to be a set) allowing a proof from basic constructive axioms. See find 4583 for a nonconstructive proof of the general case. See bdfind 13981 for a proof when 𝐴 is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
 
Theorembdfind 13981* Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4583 for a nonconstructive proof of the general case. See findset 13980 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
 
Theorembj-bdfindis 13982* Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4584 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4584, finds2 4585, finds1 4586. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-bdfindisg 13983* Version of bj-bdfindis 13982 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 13982 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))    &   𝑥𝐴    &   𝑥𝜏    &   (𝑥 = 𝐴 → (𝜑𝜏))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
 
Theorembj-bdfindes 13984 Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 13982 for explanations. From this version, it is easy to prove the bounded version of findes 4587. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑       (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-nn0suc0 13985* Constructive proof of a variant of nn0suc 4588. For a constructive proof of nn0suc 4588, see bj-nn0suc 13999. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
 
Theorembj-nntrans 13986 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
 
Theorembj-nntrans2 13987 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Tr 𝐴)
 
Theorembj-nnelirr 13988 A natural number does not belong to itself. Version of elirr 4525 for natural numbers, which does not require ax-setind 4521. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → ¬ 𝐴𝐴)
 
Theorembj-nnen2lp 13989 A version of en2lp 4538 for natural numbers, which does not require ax-setind 4521.

Note: using this theorem and bj-nnelirr 13988, one can remove dependency on ax-setind 4521 from nntri2 6473 and nndcel 6479; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))
 
Theorembj-peano4 13990 Remove from peano4 4581 dependency on ax-setind 4521. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
 
Theorembj-omtrans 13991 The set ω is transitive. A natural number is included in ω. Constructive proof of elnn 4590.

The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

(𝐴 ∈ ω → 𝐴 ⊆ ω)
 
Theorembj-omtrans2 13992 The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Tr ω
 
Theorembj-nnord 13993 A natural number is an ordinal class. Constructive proof of nnord 4596. Can also be proved from bj-nnelon 13994 if the latter is proved from bj-omssonALT 13998. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Ord 𝐴)
 
Theorembj-nnelon 13994 A natural number is an ordinal. Constructive proof of nnon 4594. Can also be proved from bj-omssonALT 13998. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → 𝐴 ∈ On)
 
Theorembj-omord 13995 The set ω is an ordinal class. Constructive proof of ordom 4591. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Ord ω
 
Theorembj-omelon 13996 The set ω is an ordinal. Constructive proof of omelon 4593. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
ω ∈ On
 
Theorembj-omsson 13997 Constructive proof of omsson 4597. See also bj-omssonALT 13998. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
ω ⊆ On
 
Theorembj-omssonALT 13998 Alternate proof of bj-omsson 13997. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
ω ⊆ On
 
Theorembj-nn0suc 13999* Proof of (biconditional form of) nn0suc 4588 from the core axioms of CZF. See also bj-nn0sucALT 14013. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
 
12.2.11  CZF: Set induction

In this section, we add the axiom of set induction to the core axioms of CZF.

 
12.2.11.1  Set induction

In this section, we prove some variants of the axiom of set induction.

 
Theoremsetindft 14000* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
(∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >