HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunitrrg 13901 Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ Ring → 𝑈𝐸)
 
Theoremrrgnz 13902 In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
𝐸 = (RLReg‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ NzRing → ¬ 0𝐸)
 
Theoremisdomn 13903* Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
 
Theoremdomnnzr 13904 A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
(𝑅 ∈ Domn → 𝑅 ∈ NzRing)
 
Theoremdomnring 13905 A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
(𝑅 ∈ Domn → 𝑅 ∈ Ring)
 
Theoremdomneq0 13906 In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
 
Theoremdomnmuln0 13907 In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
 
Theoremopprdomnbg 13908 A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13909. (Contributed by SN, 15-Jun-2015.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
 
Theoremopprdomn 13909 The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Domn → 𝑂 ∈ Domn)
 
Theoremisidom 13910 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
 
Theoremidomdomd 13911 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
(𝜑𝑅 ∈ IDomn)       (𝜑𝑅 ∈ Domn)
 
Theoremidomcringd 13912 An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
(𝜑𝑅 ∈ IDomn)       (𝜑𝑅 ∈ CRing)
 
Theoremidomringd 13913 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
(𝜑𝑅 ∈ IDomn)       (𝜑𝑅 ∈ Ring)
 
7.4  Division rings and fields
 
7.4.1  Ring apartness
 
Syntaxcapr 13914 Extend class notation with ring apartness.
class #r
 
Definitiondf-apr 13915* The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13920. (Contributed by Jim Kingdon, 13-Feb-2025.)
#r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))})
 
Theoremaprval 13916 Expand Definition df-apr 13915. (Contributed by Jim Kingdon, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑 = (-g𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))
 
Theoremaprirr 13917 The apartness relation given by df-apr 13915 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → (1r𝑅) ≠ (0g𝑅))       (𝜑 → ¬ 𝑋 # 𝑋)
 
Theoremaprsym 13918 The apartness relation given by df-apr 13915 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 # 𝑌𝑌 # 𝑋))
 
Theoremaprcotr 13919 The apartness relation given by df-apr 13915 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑𝑅 ∈ LRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))
 
Theoremaprap 13920 The relation given by df-apr 13915 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
(𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))
 
7.5  Left modules
 
7.5.1  Definition and basic properties
 
Syntaxclmod 13921 Extend class notation with class of all left modules.
class LMod
 
Syntaxcscaf 13922 The functionalization of the scalar multiplication operation.
class ·sf
 
Definitiondf-lmod 13923* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))}
 
Definitiondf-scaf 13924* Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
 
Theoremislmod 13925* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)       (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
 
Theoremlmodlema 13926 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌)))
 
Theoremislmodd 13927* Properties that determine a left module. See note in isgrpd2 13225 regarding the 𝜑 on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
(𝜑𝑉 = (Base‘𝑊))    &   (𝜑+ = (+g𝑊))    &   (𝜑𝐹 = (Scalar‘𝑊))    &   (𝜑· = ( ·𝑠𝑊))    &   (𝜑𝐵 = (Base‘𝐹))    &   (𝜑 = (+g𝐹))    &   (𝜑× = (.r𝐹))    &   (𝜑1 = (1r𝐹))    &   (𝜑𝐹 ∈ Ring)    &   (𝜑𝑊 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝑉) → (𝑥 · 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝑉𝑧𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝑉)) → ((𝑥 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑𝑥𝑉) → ( 1 · 𝑥) = 𝑥)       (𝜑𝑊 ∈ LMod)
 
Theoremlmodgrp 13928 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
(𝑊 ∈ LMod → 𝑊 ∈ Grp)
 
Theoremlmodring 13929 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → 𝐹 ∈ Ring)
 
Theoremlmodfgrp 13930 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → 𝐹 ∈ Grp)
 
Theoremlmodgrpd 13931 A left module is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑊 ∈ LMod)       (𝜑𝑊 ∈ Grp)
 
Theoremlmodbn0 13932 The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 13951). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐵 = (Base‘𝑊)       (𝑊 ∈ LMod → 𝐵 ≠ ∅)
 
Theoremlmodacl 13933 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    + = (+g𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
 
Theoremlmodmcl 13934 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = (.r𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 · 𝑌) ∈ 𝐾)
 
Theoremlmodsn0 13935 The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 13948. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       (𝑊 ∈ LMod → 𝐵 ≠ ∅)
 
Theoremlmodvacl 13936 Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
 
Theoremlmodass 13937 Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremlmodlcan 13938 Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
 
Theoremlmodvscl 13939 Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
 
Theoremscaffvalg 13940* The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
 
Theoremscafvalg 13941 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊𝑉𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
 
Theoremscafeqg 13942 If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = · )
 
Theoremscaffng 13943 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)       (𝑊𝑉 Fn (𝐾 × 𝐵))
 
Theoremlmodscaf 13944 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = ( ·sf𝑊)       (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)
 
Theoremlmodvsdi 13945 Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
 
Theoremlmodvsdir 13946 Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
 
Theoremlmodvsass 13947 Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    × = (.r𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
 
Theoremlmod0cl 13948 The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    0 = (0g𝐹)       (𝑊 ∈ LMod → 0𝐾)
 
Theoremlmod1cl 13949 The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    1 = (1r𝐹)       (𝑊 ∈ LMod → 1𝐾)
 
Theoremlmodvs1 13950 Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
 
Theoremlmod0vcl 13951 The zero vector is a vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)       (𝑊 ∈ LMod → 0𝑉)
 
Theoremlmod0vlid 13952 Left identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
 
Theoremlmod0vrid 13953 Right identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
 
Theoremlmod0vid 13954 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑋 + 𝑋) = 𝑋0 = 𝑋))
 
Theoremlmod0vs 13955 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑂 = (0g𝐹)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
 
Theoremlmodvs0 13956 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    0 = (0g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
 
Theoremlmodvsmmulgdi 13957 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    = (.g𝑊)    &   𝐸 = (.g𝐹)       ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
 
Theoremlmodfopnelem1 13958 Lemma 1 for lmodfopne 13960. (Contributed by AV, 2-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)       ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
 
Theoremlmodfopnelem2 13959 Lemma 2 for lmodfopne 13960. (Contributed by AV, 2-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)    &    1 = (1r𝑆)       ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉))
 
Theoremlmodfopne 13960 The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)    &    1 = (1r𝑆)       ((𝑊 ∈ LMod ∧ 10 ) → +· )
 
Theoremlcomf 13961 A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = ( ·𝑠𝑊)    &   𝐵 = (Base‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐺:𝐼𝐾)    &   (𝜑𝐻:𝐼𝐵)    &   (𝜑𝐼𝑉)       (𝜑 → (𝐺𝑓 · 𝐻):𝐼𝐵)
 
Theoremlmodvnegcl 13962 Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (invg𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
 
Theoremlmodvnegid 13963 Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)    &   𝑁 = (invg𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
 
Theoremlmodvneg1 13964 Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (invg𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    1 = (1r𝐹)    &   𝑀 = (invg𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))
 
Theoremlmodvsneg 13965 Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑀 = (invg𝐹)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝐵)    &   (𝜑𝑅𝐾)       (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀𝑅) · 𝑋))
 
Theoremlmodvsubcl 13966 Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
 
Theoremlmodcom 13967 Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremlmodabl 13968 A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
(𝑊 ∈ LMod → 𝑊 ∈ Abel)
 
Theoremlmodcmn 13969 A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015.)
(𝑊 ∈ LMod → 𝑊 ∈ CMnd)
 
Theoremlmodnegadd 13970 Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝑊)    &   𝑅 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑅)    &   𝐼 = (invg𝑅)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼𝐴) · 𝑋) + ((𝐼𝐵) · 𝑌)))
 
Theoremlmod4 13971 Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑍𝑉𝑈𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈)))
 
Theoremlmodvsubadd 13972 Relationship between vector subtraction and addition. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremlmodvaddsub4 13973 Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
 
Theoremlmodvpncan 13974 Addition/subtraction cancellation law for vectors. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 + 𝐵) 𝐵) = 𝐴)
 
Theoremlmodvnpcan 13975 Cancellation law for vector subtraction (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) + 𝐵) = 𝐴)
 
Theoremlmodvsubval2 13976 Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝐹)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((𝑁1 ) · 𝐵)))
 
Theoremlmodsubvs 13977 Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑁 = (invg𝐹)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))
 
Theoremlmodsubdi 13978 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))
 
Theoremlmodsubdir 13979 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &   𝑆 = (-g𝐹)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
 
Theoremlmodsubeq0 13980 If the difference between two vectors is zero, they are equal. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
 
Theoremlmodsubid 13981 Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &    = (-g𝑊)       ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝐴 𝐴) = 0 )
 
Theoremlmodprop2d 13982* If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 13983 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   𝐹 = (Scalar‘𝐾)    &   𝐺 = (Scalar‘𝐿)    &   (𝜑𝑃 = (Base‘𝐹))    &   (𝜑𝑃 = (Base‘𝐺))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
 
Theoremlmodpropd 13983* If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   (𝜑𝐹 = (Scalar‘𝐾))    &   (𝜑𝐹 = (Scalar‘𝐿))    &   𝑃 = (Base‘𝐹)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
 
Theoremrmodislmodlem 13984* Lemma for rmodislmod 13985. This is the part of the proof of rmodislmod 13985 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.)
𝑉 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = ( ·𝑠𝑅)    &   𝐹 = (Scalar‘𝑅)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)    &   (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))    &    = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))    &   𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)       ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
 
Theoremrmodislmod 13985* The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 13923 of a left module, see also islmod 13925. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
𝑉 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = ( ·𝑠𝑅)    &   𝐹 = (Scalar‘𝑅)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)    &   (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))    &    = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))    &   𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)       (𝐹 ∈ CRing → 𝐿 ∈ LMod)
 
7.5.2  Subspaces and spans in a left module
 
Syntaxclss 13986 Extend class notation with linear subspaces of a left module or left vector space.
class LSubSp
 
Definitiondf-lssm 13987* A linear subspace of a left module or left vector space is an inhabited (in contrast to non-empty for non-intuitionistic logic) subset of the base set of the left-module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
 
Theoremlssex 13988 Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
(𝑊𝑉 → (LSubSp‘𝑊) ∈ V)
 
Theoremlssmex 13989 If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
𝑆 = (LSubSp‘𝑊)       (𝑈𝑆𝑊 ∈ V)
 
Theoremlsssetm 13990* The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
 
Theoremislssm 13991* The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
 
Theoremislssmg 13992* The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) Use islssm 13991 instead. (New usage is discouraged.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &   𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊𝑋 → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
 
Theoremislssmd 13993* Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
(𝜑𝐹 = (Scalar‘𝑊))    &   (𝜑𝐵 = (Base‘𝐹))    &   (𝜑𝑉 = (Base‘𝑊))    &   (𝜑+ = (+g𝑊))    &   (𝜑· = ( ·𝑠𝑊))    &   (𝜑𝑆 = (LSubSp‘𝑊))    &   (𝜑𝑈𝑉)    &   (𝜑 → ∃𝑗 𝑗𝑈)    &   ((𝜑 ∧ (𝑥𝐵𝑎𝑈𝑏𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)    &   (𝜑𝑊𝑋)       (𝜑𝑈𝑆)
 
Theoremlssssg 13994 A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊𝑋𝑈𝑆) → 𝑈𝑉)
 
Theoremlsselg 13995 A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊𝐶𝑈𝑆𝑋𝑈) → 𝑋𝑉)
 
Theoremlss1 13996 The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)       (𝑊 ∈ LMod → 𝑉𝑆)
 
Theoremlssuni 13997 The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   (𝜑𝑊 ∈ LMod)       (𝜑 𝑆 = 𝑉)
 
Theoremlssclg 13998 Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝑆 = (LSubSp‘𝑊)       ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)
 
Theoremlssvacl 13999 Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
+ = (+g𝑊)    &   𝑆 = (LSubSp‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 + 𝑌) ∈ 𝑈)
 
Theoremlssvsubcl 14000 Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
= (-g𝑊)    &   𝑆 = (LSubSp‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑋𝑈𝑌𝑈)) → (𝑋 𝑌) ∈ 𝑈)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15819
  Copyright terms: Public domain < Previous  Next >