HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 140)
< Previous  Wrap >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-13920   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnconstwlpolem0 13901* Lemma for nconstwlpo 13904. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
(𝜑𝐺:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))    &   (𝜑 → ∀𝑥 ∈ ℕ (𝐺𝑥) = 0)       (𝜑𝐴 = 0)
 
Theoremnconstwlpolemgt0 13902* Lemma for nconstwlpo 13904. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
(𝜑𝐺:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))    &   (𝜑 → ∃𝑥 ∈ ℕ (𝐺𝑥) = 1)       (𝜑 → 0 < 𝐴)
 
Theoremnconstwlpolem 13903* Lemma for nconstwlpo 13904. (Contributed by Jim Kingdon, 23-Jul-2024.)
(𝜑𝐹:ℝ⟶ℤ)    &   (𝜑 → (𝐹‘0) = 0)    &   ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)    &   (𝜑𝐺:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))       (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
 
Theoremnconstwlpo 13904* Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.)
(𝜑𝐹:ℝ⟶ℤ)    &   (𝜑 → (𝐹‘0) = 0)    &   ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)       (𝜑 → ω ∈ WOmni)
 
Theoremneapmkvlem 13905* Lemma for neapmkv 13906. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   ((𝜑𝐴 ≠ 1) → 𝐴 # 1)       (𝜑 → (¬ ∀𝑥 ∈ ℕ (𝐹𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0))
 
Theoremneapmkv 13906* If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ω ∈ Markov)
 
11.3.8  Supremum and infimum
 
Theoremsupfz 13907 The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
(𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)
 
Theoreminffz 13908 The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
(𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
 
11.3.9  Circle constant
 
Theoremtaupi 13909 Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
τ = (2 · π)
 
11.4  Mathbox for Mykola Mostovenko
 
Theoremax1hfs 13910 Heyting's formal system Axiom #1 from [Heyting] p. 127. (Contributed by MM, 11-Aug-2018.)
(𝜑 → (𝜑𝜑))
 
11.5  Mathbox for David A. Wheeler
 
11.5.1  Testable propositions
 
Theoremdftest 13911 A proposition is testable iff its negative or double-negative is true. See Chapter 2 [Moschovakis] p. 2.

We do not formally define testability with a new token, but instead use DECID ¬ before the formula in question. For example, DECID ¬ 𝑥 = 𝑦 corresponds to "𝑥 = 𝑦 is testable". (Contributed by David A. Wheeler, 13-Aug-2018.) For statements about testable propositions, search for the keyword "testable" in the comments of statements, for instance using the Metamath command "MM> SEARCH * "testable" / COMMENTS". (New usage is discouraged.)

(DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑))
 
11.5.2  Allsome quantifier

These are definitions and proofs involving an experimental "allsome" quantifier (aka "all some").

In informal language, statements like "All Martians are green" imply that there is at least one Martian. But it's easy to mistranslate informal language into formal notations because similar statements like 𝑥𝜑𝜓 do not imply that 𝜑 is ever true, leading to vacuous truths. Some systems include a mechanism to counter this, e.g., PVS allows types to be appended with "+" to declare that they are nonempty. This section presents a different solution to the same problem.

The "allsome" quantifier expressly includes the notion of both "all" and "there exists at least one" (aka some), and is defined to make it easier to more directly express both notions. The hope is that if a quantifier more directly expresses this concept, it will be used instead and reduce the risk of creating formal expressions that look okay but in fact are mistranslations. The term "allsome" was chosen because it's short, easy to say, and clearly hints at the two concepts it combines.

I do not expect this to be used much in metamath, because in metamath there's a general policy of avoiding the use of new definitions unless there are very strong reasons to do so. Instead, my goal is to rigorously define this quantifier and demonstrate a few basic properties of it.

The syntax allows two forms that look like they would be problematic, but they are fine. When applied to a top-level implication we allow ∀!𝑥(𝜑𝜓), and when restricted (applied to a class) we allow ∀!𝑥𝐴𝜑. The first symbol after the setvar variable must always be if it is the form applied to a class, and since cannot begin a wff, it is unambiguous. The looks like it would be a problem because 𝜑 or 𝜓 might include implications, but any implication arrow within any wff must be surrounded by parentheses, so only the implication arrow of ∀! can follow the wff. The implication syntax would work fine without the parentheses, but I added the parentheses because it makes things clearer inside larger complex expressions, and it's also more consistent with the rest of the syntax.

For more, see "The Allsome Quantifier" by David A. Wheeler at https://dwheeler.com/essays/allsome.html I hope that others will eventually agree that allsome is awesome.

 
Syntaxwalsi 13912 Extend wff definition to include "all some" applied to a top-level implication, which means 𝜓 is true whenever 𝜑 is true, and there is at least least one 𝑥 where 𝜑 is true. (Contributed by David A. Wheeler, 20-Oct-2018.)
wff ∀!𝑥(𝜑𝜓)
 
Syntaxwalsc 13913 Extend wff definition to include "all some" applied to a class, which means 𝜑 is true for all 𝑥 in 𝐴, and there is at least one 𝑥 in 𝐴. (Contributed by David A. Wheeler, 20-Oct-2018.)
wff ∀!𝑥𝐴𝜑
 
Definitiondf-alsi 13914 Define "all some" applied to a top-level implication, which means 𝜓 is true whenever 𝜑 is true and there is at least one 𝑥 where 𝜑 is true. (Contributed by David A. Wheeler, 20-Oct-2018.)
(∀!𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∃𝑥𝜑))
 
Definitiondf-alsc 13915 Define "all some" applied to a class, which means 𝜑 is true for all 𝑥 in 𝐴 and there is at least one 𝑥 in 𝐴. (Contributed by David A. Wheeler, 20-Oct-2018.)
(∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
 
Theoremalsconv 13916 There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.)
(∀!𝑥(𝑥𝐴𝜑) ↔ ∀!𝑥𝐴𝜑)
 
Theoremalsi1d 13917 Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
(𝜑 → ∀!𝑥(𝜓𝜒))       (𝜑 → ∀𝑥(𝜓𝜒))
 
Theoremalsi2d 13918 Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
(𝜑 → ∀!𝑥(𝜓𝜒))       (𝜑 → ∃𝑥𝜓)
 
Theoremalsc1d 13919 Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
(𝜑 → ∀!𝑥𝐴𝜓)       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theoremalsc2d 13920 Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.)
(𝜑 → ∀!𝑥𝐴𝜓)       (𝜑 → ∃𝑥 𝑥𝐴)
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Wrap >