HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdvdsr2d 13901* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑· = (.r𝑅))    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
 
Theoremdvdsrmuld 13902 A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑· = (.r𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑𝑋 (𝑌 · 𝑋))
 
Theoremdvdsrcld 13903 Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑋 𝑌)       (𝜑𝑋𝐵)
 
Theoremdvdsrex 13904 Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
(𝑅 ∈ SRing → (∥r𝑅) ∈ V)
 
Theoremdvdsrcl2 13905 Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋 𝑌) → 𝑌𝐵)
 
Theoremdvdsrid 13906 An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 𝑋)
 
Theoremdvdsrtr 13907 Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
 
Theoremdvdsrmul1 13908 The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋 𝑌) → (𝑋 · 𝑍) (𝑌 · 𝑍))
 
Theoremdvdsrneg 13909 An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 (𝑁𝑋))
 
Theoremdvdsr01 13910 In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )
 
Theoremdvdsr02 13911 Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 𝑋𝑋 = 0 ))
 
Theoremisunitd 13912 Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑1 = (1r𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑆 = (oppr𝑅))    &   (𝜑𝐸 = (∥r𝑆))    &   (𝜑𝑅 ∈ SRing)       (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
 
Theorem1unit 13913 The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 1𝑈)
 
Theoremunitcld 13914 A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑋𝑈)       (𝜑𝑋𝐵)
 
Theoremunitssd 13915 The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑅 ∈ SRing)       (𝜑𝑈𝐵)
 
Theoremopprunitd 13916 Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑆 = (oppr𝑅))    &   (𝜑𝑅 ∈ Ring)       (𝜑𝑈 = (Unit‘𝑆))
 
Theoremcrngunit 13917 Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑈 = (Unit‘𝑅)    &    1 = (1r𝑅)    &    = (∥r𝑅)       (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))
 
Theoremdvdsunit 13918 A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑈 = (Unit‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ CRing ∧ 𝑌 𝑋𝑋𝑈) → 𝑌𝑈)
 
Theoremunitmulcl 13919 The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
 
Theoremunitmulclb 13920 Reversal of unitmulcl 13919 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋𝑈𝑌𝑈)))
 
Theoremunitgrpbasd 13921 The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))    &   (𝜑𝑅 ∈ SRing)       (𝜑𝑈 = (Base‘𝐺))
 
Theoremunitgrp 13922 The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)       (𝑅 ∈ Ring → 𝐺 ∈ Grp)
 
Theoremunitabl 13923 The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)       (𝑅 ∈ CRing → 𝐺 ∈ Abel)
 
Theoremunitgrpid 13924 The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 1 = (0g𝐺))
 
Theoremunitsubm 13925 The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (Unit‘𝑅)    &   𝑀 = (mulGrp‘𝑅)       (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))
 
Syntaxcinvr 13926 Extend class notation with multiplicative inverse.
class invr
 
Definitiondf-invr 13927 Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
 
Theoreminvrfvald 13928 Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))    &   (𝜑𝐼 = (invr𝑅))    &   (𝜑𝑅 ∈ Ring)       (𝜑𝐼 = (invg𝐺))
 
Theoremunitinvcl 13929 The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝑈)
 
Theoremunitinvinv 13930 The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼‘(𝐼𝑋)) = 𝑋)
 
Theoremringinvcl 13931 The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝐵)
 
Theoremunitlinv 13932 A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremunitrinv 13933 A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋 · (𝐼𝑋)) = 1 )
 
Theorem1rinv 13934 The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐼 = (invr𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐼1 ) = 1 )
 
Theorem0unit 13935 The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
 
Theoremunitnegcl 13936 The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
 
Syntaxcdvr 13937 Extend class notation with ring division.
class /r
 
Definitiondf-dvr 13938* Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.)
/r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
 
Theoremdvrfvald 13939* Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐼 = (invr𝑅))    &   (𝜑/ = (/r𝑅))    &   (𝜑𝑅 ∈ SRing)       (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
 
Theoremdvrvald 13940 Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐼 = (invr𝑅))    &   (𝜑/ = (/r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝑈)       (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))
 
Theoremdvrcl 13941 Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) ∈ 𝐵)
 
Theoremunitdvcl 13942 The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 / 𝑌) ∈ 𝑈)
 
Theoremdvrid 13943 A ring element divided by itself is the ring unity. (dividap 8781 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋 / 𝑋) = 1 )
 
Theoremdvr1 13944 A ring element divided by the ring unity is itself. (div1 8783 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐵 = (Base‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 / 1 ) = 𝑋)
 
Theoremdvrass 13945 An associative law for division. (divassap 8770 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍)))
 
Theoremdvrcan1 13946 A cancellation law for division. (divcanap1 8761 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)
 
Theoremdvrcan3 13947 A cancellation law for division. (divcanap3 8778 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)
 
Theoremdvreq1 13948 Equality in terms of ratio equal to ring unity. (diveqap1 8785 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) = 1𝑋 = 𝑌))
 
Theoremdvrdir 13949 Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    + = (+g𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))
 
Theoremrdivmuldivd 13950 Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    + = (+g𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝑈)       (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
 
Theoremringinvdv 13951 Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) = ( 1 / 𝑋))
 
Theoremrngidpropdg 13952* The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (1r𝐾) = (1r𝐿))
 
Theoremdvdsrpropdg 13953* The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾 ∈ SRing)    &   (𝜑𝐿 ∈ SRing)       (𝜑 → (∥r𝐾) = (∥r𝐿))
 
Theoremunitpropdg 13954* The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾 ∈ Ring)    &   (𝜑𝐿 ∈ Ring)       (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
 
Theoreminvrpropdg 13955* The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾 ∈ Ring)    &   (𝜑𝐿 ∈ Ring)       (𝜑 → (invr𝐾) = (invr𝐿))
 
7.3.8  Ring homomorphisms
 
Syntaxcrh 13956 Extend class notation with the ring homomorphisms.
class RingHom
 
Syntaxcrs 13957 Extend class notation with the ring isomorphisms.
class RingIso
 
Definitiondf-rhm 13958* Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
 
Definitiondf-rim 13959* Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
 
Theoremdfrhm2 13960* The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
 
Theoremrhmrcl1 13961 Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
 
Theoremrhmrcl2 13962 Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
 
Theoremrhmex 13963 Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
((𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)
 
Theoremisrhm 13964 A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑁 = (mulGrp‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
 
Theoremrhmmhm 13965 A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑁 = (mulGrp‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁))
 
Theoremrimrcl 13966 Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
 
Theoremisrim0 13967 A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
 
Theoremrhmghm 13968 A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
 
Theoremrhmf 13969 A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵𝐶)
 
Theoremrhmmul 13970 A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑋 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑆)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
 
Theoremisrhm2d 13971* Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &   𝑁 = (1r𝑆)    &    · = (.r𝑅)    &    × = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑 → (𝐹1 ) = 𝑁)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))    &   (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))       (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremisrhmd 13972* Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &   𝑁 = (1r𝑆)    &    · = (.r𝑅)    &    × = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑 → (𝐹1 ) = 𝑁)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))    &   𝐶 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)    &   (𝜑𝐹:𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))       (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremrhm1 13973 Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.)
1 = (1r𝑅)    &   𝑁 = (1r𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)
 
Theoremrhmf1o 13974 A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))
 
Theoremisrim 13975 An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
 
Theoremrimf1o 13976 An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)
 
Theoremrimrhm 13977 A ring isomorphism is a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremrhmfn 13978 The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.)
RingHom Fn (Ring × Ring)
 
Theoremrhmval 13979 The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.)
((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
 
Theoremrhmco 13980 The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))
 
Theoremrhmdvdsr 13981 A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
𝑋 = (Base‘𝑅)    &    = (∥r𝑅)    &    / = (∥r𝑆)       (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
 
Theoremrhmopp 13982 A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
 
Theoremelrhmunit 13983 Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
 
Theoremrhmunitinv 13984 Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
 
7.3.9  Nonzero rings and zero rings
 
Syntaxcnzr 13985 The class of nonzero rings.
class NzRing
 
Definitiondf-nzr 13986 A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.)
NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
 
Theoremisnzr 13987 Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
 
Theoremnzrnz 13988 One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ NzRing → 10 )
 
Theoremnzrring 13989 A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
(𝑅 ∈ NzRing → 𝑅 ∈ Ring)
 
Theoremisnzr2 13990 Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
 
Theoremopprnzrbg 13991 The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 13992. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
 
Theoremopprnzr 13992 The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.)
𝑂 = (oppr𝑅)       (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
 
Theoremringelnzr 13993 A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing)
 
Theoremnzrunit 13994 A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴0 )
 
Theorem01eq0ring 13995 If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })
 
7.3.10  Local rings
 
Syntaxclring 13996 Extend class notation with class of all local rings.
class LRing
 
Definitiondf-lring 13997* A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
 
Theoremislring 13998* The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    1 = (1r𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
 
Theoremlringnzr 13999 A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
(𝑅 ∈ LRing → 𝑅 ∈ NzRing)
 
Theoremlringring 14000 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(𝑅 ∈ LRing → 𝑅 ∈ Ring)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >