HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxblpnfps 13901 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremxblpnf 13902 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremblpnf 13903 The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝑃(ballβ€˜π·)+∞) = 𝑋)
 
Theorembldisj 13904 Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≀ (𝑃𝐷𝑄))) β†’ ((𝑃(ballβ€˜π·)𝑅) ∩ (𝑄(ballβ€˜π·)𝑆)) = βˆ…)
 
Theoremblgt0 13905 A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 < 𝑅)
 
Theorembl2in 13906 Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ ((𝑃(ballβ€˜π·)𝑅) ∩ (𝑄(ballβ€˜π·)𝑅)) = βˆ…)
 
Theoremxblss2ps 13907 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13910 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(πœ‘ β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))    &   (πœ‘ β†’ 𝑃 ∈ 𝑋)    &   (πœ‘ β†’ 𝑄 ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ ℝ*)    &   (πœ‘ β†’ 𝑆 ∈ ℝ*)    &   (πœ‘ β†’ (𝑃𝐷𝑄) ∈ ℝ)    &   (πœ‘ β†’ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅))    β‡’   (πœ‘ β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))
 
Theoremxblss2 13908 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13910 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.)
(πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))    &   (πœ‘ β†’ 𝑃 ∈ 𝑋)    &   (πœ‘ β†’ 𝑄 ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ ℝ*)    &   (πœ‘ β†’ 𝑆 ∈ ℝ*)    &   (πœ‘ β†’ (𝑃𝐷𝑄) ∈ ℝ)    &   (πœ‘ β†’ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅))    β‡’   (πœ‘ β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))
 
Theoremblss2ps 13909 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))
 
Theoremblss2 13910 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≀ (𝑆 βˆ’ 𝑅))) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))
 
Theoremblhalf 13911 A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
(((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ π‘Œ ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (π‘Œ(ballβ€˜π‘€)(𝑅 / 2)))) β†’ (π‘Œ(ballβ€˜π‘€)(𝑅 / 2)) βŠ† (𝑍(ballβ€˜π‘€)𝑅))
 
Theoremblfps 13912 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋)
 
Theoremblf 13913 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋)
 
Theoremblrnps 13914* Membership in the range of the ball function. Note that ran (ballβ€˜π·) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐴 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘₯ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐴 = (π‘₯(ballβ€˜π·)π‘Ÿ)))
 
Theoremblrn 13915* Membership in the range of the ball function. Note that ran (ballβ€˜π·) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐴 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘₯ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐴 = (π‘₯(ballβ€˜π·)π‘Ÿ)))
 
Theoremxblcntrps 13916 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))
 
Theoremxblcntr 13917 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))
 
Theoremblcntrps 13918 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))
 
Theoremblcntr 13919 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))
 
Theoremxblm 13920* A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (βˆƒπ‘₯ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) ↔ 0 < 𝑅))
 
Theorembln0 13921 A ball is not empty. It is also inhabited, as seen at blcntr 13919. (Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) β†’ (𝑃(ballβ€˜π·)𝑅) β‰  βˆ…)
 
Theoremblelrnps 13922 A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ran (ballβ€˜π·))
 
Theoremblelrn 13923 A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ran (ballβ€˜π·))
 
Theoremblssm 13924 A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† 𝑋)
 
Theoremunirnblps 13925 The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
 
Theoremunirnbl 13926 The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
 
Theoremblininf 13927 The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) β†’ ((𝑃(ballβ€˜π·)𝑅) ∩ (𝑃(ballβ€˜π·)𝑆)) = (𝑃(ballβ€˜π·)inf({𝑅, 𝑆}, ℝ*, < )))
 
Theoremssblps 13928 The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≀ 𝑆) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑃(ballβ€˜π·)𝑆))
 
Theoremssbl 13929 The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≀ 𝑆) β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑃(ballβ€˜π·)𝑆))
 
Theoremblssps 13930* Any point 𝑃 in a ball 𝐡 can be centered in another ball that is a subset of 𝐡. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
 
Theoremblss 13931* Any point 𝑃 in a ball 𝐡 can be centered in another ball that is a subset of 𝐡. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
 
Theoremblssexps 13932* Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (βˆƒπ‘₯ ∈ ran (ballβ€˜π·)(𝑃 ∈ π‘₯ ∧ π‘₯ βŠ† 𝐴) ↔ βˆƒπ‘Ÿ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘Ÿ) βŠ† 𝐴))
 
Theoremblssex 13933* Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (βˆƒπ‘₯ ∈ ran (ballβ€˜π·)(𝑃 ∈ π‘₯ ∧ π‘₯ βŠ† 𝐴) ↔ βˆƒπ‘Ÿ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘Ÿ) βŠ† 𝐴))
 
Theoremssblex 13934* A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+)) β†’ βˆƒπ‘₯ ∈ ℝ+ (π‘₯ < 𝑅 ∧ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑃(ballβ€˜π·)𝑆)))
 
Theoremblin2 13935* Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢))
 
Theoremblbas 13936 The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
(𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜π·) ∈ TopBases)
 
Theoremblres 13937 A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
𝐢 = (𝐷 β†Ύ (π‘Œ Γ— π‘Œ))    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝑋 ∩ π‘Œ) ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜πΆ)𝑅) = ((𝑃(ballβ€˜π·)𝑅) ∩ π‘Œ))
 
Theoremxmeterval 13938 Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
∼ = (◑𝐷 β€œ ℝ)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐴 ∼ 𝐡 ↔ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐷𝐡) ∈ ℝ)))
 
Theoremxmeter 13939 The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
∼ = (◑𝐷 β€œ ℝ)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ∼ Er 𝑋)
 
Theoremxmetec 13940 The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
∼ = (◑𝐷 β€œ ℝ)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ [𝑃] ∼ = (𝑃(ballβ€˜π·)+∞))
 
Theoremblssec 13941 A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 13929 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
∼ = (◑𝐷 β€œ ℝ)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑆) βŠ† [𝑃] ∼ )
 
Theoremblpnfctr 13942 The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ballβ€˜π·)+∞)) β†’ (𝑃(ballβ€˜π·)+∞) = (𝐴(ballβ€˜π·)+∞))
 
Theoremxmetresbl 13943 An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 13940, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
𝐡 = (𝑃(ballβ€˜π·)𝑅)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝐷 β†Ύ (𝐡 Γ— 𝐡)) ∈ (Metβ€˜π΅))
 
8.2.4  Open sets of a metric space
 
Theoremmopnrel 13944 The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Rel MetOpen
 
Theoremmopnval 13945 An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpenβ€˜π·) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 13947, the open sets of a metric space form a topology 𝐽, whose base set is βˆͺ 𝐽 by mopnuni 13948. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜π·)))
 
Theoremmopntopon 13946 The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
 
Theoremmopntop 13947 The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ Top)
 
Theoremmopnuni 13948 The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
 
Theoremelmopn 13949* The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐴 ∈ 𝐽 ↔ (𝐴 βŠ† 𝑋 ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑦 ∧ 𝑦 βŠ† 𝐴))))
 
Theoremmopnfss 13950 The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 βŠ† 𝒫 𝑋)
 
Theoremmopnm 13951 The base set of a metric space is open. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
 
Theoremelmopn2 13952* A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐴 ∈ 𝐽 ↔ (𝐴 βŠ† 𝑋 ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑦) βŠ† 𝐴)))
 
Theoremmopnss 13953 An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝐽) β†’ 𝐴 βŠ† 𝑋)
 
Theoremisxms 13954 Express the predicate "βŸ¨π‘‹, 𝐷⟩ is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (TopOpenβ€˜πΎ)    &   π‘‹ = (Baseβ€˜πΎ)    &   π· = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpenβ€˜π·)))
 
Theoremisxms2 13955 Express the predicate "βŸ¨π‘‹, 𝐷⟩ is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (TopOpenβ€˜πΎ)    &   π‘‹ = (Baseβ€˜πΎ)    &   π· = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐽 = (MetOpenβ€˜π·)))
 
Theoremisms 13956 Express the predicate "βŸ¨π‘‹, 𝐷⟩ is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (TopOpenβ€˜πΎ)    &   π‘‹ = (Baseβ€˜πΎ)    &   π· = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Metβ€˜π‘‹)))
 
Theoremisms2 13957 Express the predicate "βŸ¨π‘‹, 𝐷⟩ is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (TopOpenβ€˜πΎ)    &   π‘‹ = (Baseβ€˜πΎ)    &   π· = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝐽 = (MetOpenβ€˜π·)))
 
Theoremxmstopn 13958 The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (TopOpenβ€˜πΎ)    &   π‘‹ = (Baseβ€˜πΎ)    &   π· = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝐾 ∈ ∞MetSp β†’ 𝐽 = (MetOpenβ€˜π·))
 
Theoremmstopn 13959 The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (TopOpenβ€˜πΎ)    &   π‘‹ = (Baseβ€˜πΎ)    &   π· = ((distβ€˜πΎ) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝐾 ∈ MetSp β†’ 𝐽 = (MetOpenβ€˜π·))
 
Theoremxmstps 13960 An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ ∞MetSp β†’ 𝑀 ∈ TopSp)
 
Theoremmsxms 13961 A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ MetSp β†’ 𝑀 ∈ ∞MetSp)
 
Theoremmstps 13962 A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ MetSp β†’ 𝑀 ∈ TopSp)
 
Theoremxmsxmet 13963 The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝑀 ∈ ∞MetSp β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
 
Theoremmsmet 13964 The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 12-Nov-2013.)
𝑋 = (Baseβ€˜π‘€)    &   π· = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝑀 ∈ MetSp β†’ 𝐷 ∈ (Metβ€˜π‘‹))
 
Theoremmsf 13965 The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝑋 = (Baseβ€˜π‘€)    &   π· = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋))    β‡’   (𝑀 ∈ MetSp β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„)
 
Theoremxmsxmet2 13966 The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   (𝑀 ∈ ∞MetSp β†’ (𝐷 β†Ύ (𝑋 Γ— 𝑋)) ∈ (∞Metβ€˜π‘‹))
 
Theoremmsmet2 13967 The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   (𝑀 ∈ MetSp β†’ (𝐷 β†Ύ (𝑋 Γ— 𝑋)) ∈ (Metβ€˜π‘‹))
 
Theoremmscl 13968 Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ)
 
Theoremxmscl 13969 Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
 
Theoremxmsge0 13970 The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐡))
 
Theoremxmseq0 13971 The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))
 
Theoremxmssym 13972 The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) = (𝐡𝐷𝐴))
 
Theoremxmstri2 13973 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ (𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐢𝐷𝐴) +𝑒 (𝐢𝐷𝐡)))
 
Theoremmstri2 13974 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ MetSp ∧ (𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐢𝐷𝐴) + (𝐢𝐷𝐡)))
 
Theoremxmstri 13975 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐴𝐷𝐢) +𝑒 (𝐢𝐷𝐡)))
 
Theoremmstri 13976 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐴𝐷𝐢) + (𝐢𝐷𝐡)))
 
Theoremxmstri3 13977 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐴𝐷𝐢) +𝑒 (𝐡𝐷𝐢)))
 
Theoremmstri3 13978 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐴𝐷𝐢) + (𝐡𝐷𝐢)))
 
Theoremmsrtri 13979 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Baseβ€˜π‘€)    &   π· = (distβ€˜π‘€)    β‡’   ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (absβ€˜((𝐴𝐷𝐢) βˆ’ (𝐡𝐷𝐢))) ≀ (𝐴𝐷𝐡))
 
Theoremxmspropd 13980 Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   (πœ‘ β†’ ((distβ€˜πΎ) β†Ύ (𝐡 Γ— 𝐡)) = ((distβ€˜πΏ) β†Ύ (𝐡 Γ— 𝐡)))    &   (πœ‘ β†’ (TopOpenβ€˜πΎ) = (TopOpenβ€˜πΏ))    β‡’   (πœ‘ β†’ (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
 
Theoremmspropd 13981 Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   (πœ‘ β†’ ((distβ€˜πΎ) β†Ύ (𝐡 Γ— 𝐡)) = ((distβ€˜πΏ) β†Ύ (𝐡 Γ— 𝐡)))    &   (πœ‘ β†’ (TopOpenβ€˜πΎ) = (TopOpenβ€˜πΏ))    β‡’   (πœ‘ β†’ (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
 
Theoremsetsmsbasg 13982 The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
(πœ‘ β†’ 𝑋 = (Baseβ€˜π‘€))    &   (πœ‘ β†’ 𝐷 = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋)))    &   (πœ‘ β†’ 𝐾 = (𝑀 sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜π·)⟩))    &   (πœ‘ β†’ 𝑀 ∈ 𝑉)    &   (πœ‘ β†’ (MetOpenβ€˜π·) ∈ π‘Š)    β‡’   (πœ‘ β†’ 𝑋 = (Baseβ€˜πΎ))
 
Theoremsetsmsdsg 13983 The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
(πœ‘ β†’ 𝑋 = (Baseβ€˜π‘€))    &   (πœ‘ β†’ 𝐷 = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋)))    &   (πœ‘ β†’ 𝐾 = (𝑀 sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜π·)⟩))    &   (πœ‘ β†’ 𝑀 ∈ 𝑉)    &   (πœ‘ β†’ (MetOpenβ€˜π·) ∈ π‘Š)    β‡’   (πœ‘ β†’ (distβ€˜π‘€) = (distβ€˜πΎ))
 
Theoremsetsmstsetg 13984 The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
(πœ‘ β†’ 𝑋 = (Baseβ€˜π‘€))    &   (πœ‘ β†’ 𝐷 = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋)))    &   (πœ‘ β†’ 𝐾 = (𝑀 sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜π·)⟩))    &   (πœ‘ β†’ 𝑀 ∈ 𝑉)    &   (πœ‘ β†’ (MetOpenβ€˜π·) ∈ π‘Š)    β‡’   (πœ‘ β†’ (MetOpenβ€˜π·) = (TopSetβ€˜πΎ))
 
Theoremmopni 13985* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) β†’ βˆƒπ‘₯ ∈ ran (ballβ€˜π·)(𝑃 ∈ π‘₯ ∧ π‘₯ βŠ† 𝐴))
 
Theoremmopni2 13986* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐴)
 
Theoremmopni3 13987* An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) β†’ βˆƒπ‘₯ ∈ ℝ+ (π‘₯ < 𝑅 ∧ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐴))
 
Theoremblssopn 13988 The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜π·) βŠ† 𝐽)
 
Theoremunimopn 13989 The union of a collection of open sets of a metric space is open. Theorem T2 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 βŠ† 𝐽) β†’ βˆͺ 𝐴 ∈ 𝐽)
 
Theoremmopnin 13990 The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝐽 ∧ 𝐡 ∈ 𝐽) β†’ (𝐴 ∩ 𝐡) ∈ 𝐽)
 
Theoremmopn0 13991 The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.)
𝐽 = (MetOpenβ€˜π·)    β‡’   (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ… ∈ 𝐽)
 
Theoremrnblopn 13992 A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·)) β†’ 𝐡 ∈ 𝐽)
 
Theoremblopn 13993 A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ 𝐽)
 
Theoremneibl 13994* The neighborhoods around a point 𝑃 of a metric space are those subsets containing a ball around 𝑃. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘Ÿ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘Ÿ) βŠ† 𝑁)))
 
Theoremblnei 13995 A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (MetOpenβ€˜π·)    β‡’   ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ((neiβ€˜π½)β€˜{𝑃}))
 
Theoremblsscls2 13996* A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
𝐽 = (MetOpenβ€˜π·)    &   π‘† = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≀ 𝑅}    β‡’   (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇)) β†’ 𝑆 βŠ† (𝑃(ballβ€˜π·)𝑇))
 
Theoremmetss 13997* Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐢. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    β‡’   ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
 
Theoremmetequiv 13998* Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    β‡’   ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 = 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆ€π‘Ž ∈ ℝ+ βˆƒπ‘ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)𝑏) βŠ† (π‘₯(ballβ€˜π·)π‘Ž))))
 
Theoremmetequiv2 13999* If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    β‡’   ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (𝑠 ≀ π‘Ÿ ∧ (π‘₯(ballβ€˜πΆ)𝑠) = (π‘₯(ballβ€˜π·)𝑠)) β†’ 𝐽 = 𝐾))
 
Theoremmetss2lem 14000* Lemma for metss2 14001. (Contributed by Mario Carneiro, 14-Sep-2015.)
𝐽 = (MetOpenβ€˜πΆ)    &   πΎ = (MetOpenβ€˜π·)    &   (πœ‘ β†’ 𝐢 ∈ (Metβ€˜π‘‹))    &   (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))    &   (πœ‘ β†’ 𝑅 ∈ ℝ+)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐢𝑦) ≀ (𝑅 Β· (π‘₯𝐷𝑦)))    β‡’   ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) β†’ (π‘₯(ballβ€˜π·)(𝑆 / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)𝑆))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >