Theorem List for Intuitionistic Logic Explorer - 13901-14000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | unitrrg 13901 |
Units are regular elements. (Contributed by Stefan O'Rear,
22-Mar-2015.)
|
| ⊢ 𝐸 = (RLReg‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| |
| Theorem | rrgnz 13902 |
In a nonzero ring, the zero is a left zero divisor (that is, not a
left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
|
| ⊢ 𝐸 = (RLReg‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) |
| |
| Theorem | isdomn 13903* |
Expand definition of a domain. (Contributed by Mario Carneiro,
28-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| |
| Theorem | domnnzr 13904 |
A domain is a nonzero ring. (Contributed by Mario Carneiro,
28-Mar-2015.)
|
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| |
| Theorem | domnring 13905 |
A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
|
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| |
| Theorem | domneq0 13906 |
In a domain, a product is zero iff it has a zero factor. (Contributed
by Mario Carneiro, 28-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| |
| Theorem | domnmuln0 13907 |
In a domain, a product of nonzero elements is nonzero. (Contributed by
Mario Carneiro, 6-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| |
| Theorem | opprdomnbg 13908 |
A class is a domain if and only if its opposite is a domain,
biconditional form of opprdomn 13909. (Contributed by SN, 15-Jun-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn)) |
| |
| Theorem | opprdomn 13909 |
The opposite of a domain is also a domain. (Contributed by Mario
Carneiro, 15-Jun-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Domn → 𝑂 ∈ Domn) |
| |
| Theorem | isidom 13910 |
An integral domain is a commutative domain. (Contributed by Mario
Carneiro, 17-Jun-2015.)
|
| ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| |
| Theorem | idomdomd 13911 |
An integral domain is a domain. (Contributed by Thierry Arnoux,
22-Mar-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ Domn) |
| |
| Theorem | idomcringd 13912 |
An integral domain is a commutative ring with unity. (Contributed by
Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) |
| |
| Theorem | idomringd 13913 |
An integral domain is a ring. (Contributed by Thierry Arnoux,
22-Mar-2025.)
|
| ⊢ (𝜑 → 𝑅 ∈ IDomn)
⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) |
| |
| 7.4 Division rings and
fields
|
| |
| 7.4.1 Ring apartness
|
| |
| Syntax | capr 13914 |
Extend class notation with ring apartness.
|
| class #r |
| |
| Definition | df-apr 13915* |
The relation between elements whose difference is invertible, which for
a local ring is an apartness relation by aprap 13920. (Contributed by Jim
Kingdon, 13-Feb-2025.)
|
| ⊢ #r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g‘𝑤)𝑦) ∈ (Unit‘𝑤))}) |
| |
| Theorem | aprval 13916 |
Expand Definition df-apr 13915. (Contributed by Jim Kingdon,
17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → − =
(-g‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 − 𝑌) ∈ 𝑈)) |
| |
| Theorem | aprirr 13917 |
The apartness relation given by df-apr 13915 for a nonzero ring is
irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) ⇒ ⊢ (𝜑 → ¬ 𝑋 # 𝑋) |
| |
| Theorem | aprsym 13918 |
The apartness relation given by df-apr 13915 for a ring is symmetric.
(Contributed by Jim Kingdon, 17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| |
| Theorem | aprcotr 13919 |
The apartness relation given by df-apr 13915 for a local ring is
cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → # =
(#r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍 ∨ 𝑌 # 𝑍))) |
| |
| Theorem | aprap 13920 |
The relation given by df-apr 13915 for a local ring is an apartness
relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
|
| ⊢ (𝑅 ∈ LRing →
(#r‘𝑅) Ap
(Base‘𝑅)) |
| |
| 7.5 Left modules
|
| |
| 7.5.1 Definition and basic
properties
|
| |
| Syntax | clmod 13921 |
Extend class notation with class of all left modules.
|
| class LMod |
| |
| Syntax | cscaf 13922 |
The functionalization of the scalar multiplication operation.
|
| class
·sf |
| |
| Definition | df-lmod 13923* |
Define the class of all left modules, which are generalizations of left
vector spaces. A left module over a ring is an (Abelian) group
(vectors) together with a ring (scalars) and a left scalar product
connecting them. (Contributed by NM, 4-Nov-2013.)
|
| ⊢ LMod = {𝑔 ∈ Grp ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
| |
| Definition | df-scaf 13924* |
Define the functionalization of the ·𝑠 operator. This restricts
the
value of ·𝑠 to
the stated domain, which is necessary when working
with restricted structures, whose operations may be defined on a larger
set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ ·sf =
(𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
| |
| Theorem | islmod 13925* |
The predicate "is a left module". (Contributed by NM, 4-Nov-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
| |
| Theorem | lmodlema 13926 |
Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) |
| |
| Theorem | islmodd 13927* |
Properties that determine a left module. See note in isgrpd2 13225
regarding the 𝜑 on hypotheses that name structure
components.
(Contributed by Mario Carneiro, 22-Jun-2014.)
|
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ =
(+g‘𝐹)) & ⊢ (𝜑 → × =
(.r‘𝐹)) & ⊢ (𝜑 → 1 =
(1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) |
| |
| Theorem | lmodgrp 13928 |
A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by
Mario Carneiro, 25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| |
| Theorem | lmodring 13929 |
The scalar component of a left module is a ring. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| |
| Theorem | lmodfgrp 13930 |
The scalar component of a left module is an additive group.
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| |
| Theorem | lmodgrpd 13931 |
A left module is a group. (Contributed by SN, 16-May-2024.)
|
| ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) |
| |
| Theorem | lmodbn0 13932 |
The base set of a left module is nonempty. It is also inhabited (by
lmod0vcl 13951). (Contributed by NM, 8-Dec-2013.)
(Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodacl 13933 |
Closure of ring addition for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ + =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodmcl 13934 |
Closure of ring multiplication for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodsn0 13935 |
The set of scalars in a left module is nonempty. It is also inhabited,
by lmod0cl 13948. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodvacl 13936 |
Closure of vector addition for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodass 13937 |
Left module vector sum is associative. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| |
| Theorem | lmodlcan 13938 |
Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | lmodvscl 13939 |
Closure of scalar product for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| |
| Theorem | scaffvalg 13940* |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| |
| Theorem | scafvalg 13941 |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
| |
| Theorem | scafeqg 13942 |
If the scalar multiplication operation is already a function, the
functionalization of it is equal to the original operation.
(Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = ·
) |
| |
| Theorem | scaffng 13943 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| |
| Theorem | lmodscaf 13944 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| |
| Theorem | lmodvsdi 13945 |
Distributive law for scalar product (left-distributivity). (Contributed
by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| |
| Theorem | lmodvsdir 13946 |
Distributive law for scalar product (right-distributivity).
(Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro,
22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| |
| Theorem | lmodvsass 13947 |
Associative law for scalar product. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ × =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| |
| Theorem | lmod0cl 13948 |
The ring zero in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| |
| Theorem | lmod1cl 13949 |
The ring unity in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
| |
| Theorem | lmodvs1 13950 |
Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| |
| Theorem | lmod0vcl 13951 |
The zero vector is a vector. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| |
| Theorem | lmod0vlid 13952 |
Left identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| |
| Theorem | lmod0vrid 13953 |
Right identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
| |
| Theorem | lmod0vid 13954 |
Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM, 9-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| |
| Theorem | lmod0vs 13955 |
Zero times a vector is the zero vector. Equation 1a of [Kreyszig]
p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑂 = (0g‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| |
| Theorem | lmodvs0 13956 |
Anything times the zero vector is the zero vector. Equation 1b of
[Kreyszig] p. 51. (Contributed by NM,
12-Jan-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| |
| Theorem | lmodvsmmulgdi 13957 |
Distributive law for a group multiple of a scalar multiplication.
(Contributed by AV, 2-Sep-2019.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ↑ =
(.g‘𝑊)
& ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) |
| |
| Theorem | lmodfopnelem1 13958 |
Lemma 1 for lmodfopne 13960. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| |
| Theorem | lmodfopnelem2 13959 |
Lemma 2 for lmodfopne 13960. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| |
| Theorem | lmodfopne 13960 |
The (functionalized) operations of a left module (over a nonzero ring)
cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV,
2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ ·
) |
| |
| Theorem | lcomf 13961 |
A linear-combination sum is a function. (Contributed by Stefan O'Rear,
28-Feb-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾)
& ⊢ (𝜑 → 𝐻:𝐼⟶𝐵)
& ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
| |
| Theorem | lmodvnegcl 13962 |
Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) |
| |
| Theorem | lmodvnegid 13963 |
Addition of a vector with its negative. (Contributed by NM,
18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| |
| Theorem | lmodvneg1 13964 |
Minus 1 times a vector is the negative of the vector. Equation 2 of
[Kreyszig] p. 51. (Contributed by NM,
18-Apr-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| |
| Theorem | lmodvsneg 13965 |
Multiplication of a vector by a negated scalar. (Contributed by Stefan
O'Rear, 28-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| |
| Theorem | lmodvsubcl 13966 |
Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodcom 13967 |
Left module vector sum is commutative. (Contributed by Gérard
Lang, 25-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | lmodabl 13968 |
A left module is an abelian group (of vectors, under addition).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| |
| Theorem | lmodcmn 13969 |
A left module is a commutative monoid under addition. (Contributed by
NM, 7-Jan-2015.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) |
| |
| Theorem | lmodnegadd 13970 |
Distribute negation through addition of scalar products. (Contributed
by NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝑅 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑅)
& ⊢ 𝐼 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| |
| Theorem | lmod4 13971 |
Commutative/associative law for left module vector sum. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈))) |
| |
| Theorem | lmodvsubadd 13972 |
Relationship between vector subtraction and addition. (Contributed by
NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | lmodvaddsub4 13973 |
Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) |
| |
| Theorem | lmodvpncan 13974 |
Addition/subtraction cancellation law for vectors. (Contributed by NM,
16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | lmodvnpcan 13975 |
Cancellation law for vector subtraction (Contributed by NM,
19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | lmodvsubval2 13976 |
Value of vector subtraction in terms of addition. (Contributed by NM,
31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
| |
| Theorem | lmodsubvs 13977 |
Subtraction of a scalar product in terms of addition. (Contributed by
NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| |
| Theorem | lmodsubdi 13978 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |
| |
| Theorem | lmodsubdir 13979 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (-g‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| |
| Theorem | lmodsubeq0 13980 |
If the difference between two vectors is zero, they are equal.
(Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | lmodsubid 13981 |
Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉) → (𝐴 − 𝐴) = 0 ) |
| |
| Theorem | lmodprop2d 13982* |
If two structures have the same components (properties), one is a left
module iff the other one is. This version of lmodpropd 13983 also breaks up
the components of the scalar ring. (Contributed by Mario Carneiro,
27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | lmodpropd 13983* |
If two structures have the same components (properties), one is a left
module iff the other one is. (Contributed by Mario Carneiro,
8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | rmodislmodlem 13984* |
Lemma for rmodislmod 13985. This is the part of the proof of rmodislmod 13985
which requires the scalar ring to be commutative. (Contributed by AV,
3-Dec-2021.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) |
| |
| Theorem | rmodislmod 13985* |
The right module 𝑅 induces a left module 𝐿 by
replacing the
scalar multiplication with a reversed multiplication if the scalar ring
is commutative. The hypothesis "rmodislmod.r" is a definition
of a
right module analogous to Definition df-lmod 13923 of a left module, see
also islmod 13925. (Contributed by AV, 3-Dec-2021.) (Proof
shortened by
AV, 18-Oct-2024.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) |
| |
| 7.5.2 Subspaces and spans in a left
module
|
| |
| Syntax | clss 13986 |
Extend class notation with linear subspaces of a left module or left
vector space.
|
| class LSubSp |
| |
| Definition | df-lssm 13987* |
A linear subspace of a left module or left vector space is an inhabited
(in contrast to non-empty for non-intuitionistic logic) subset of the
base set of the left-module/vector space with a closure condition on
vector addition and scalar multiplication. (Contributed by NM,
8-Dec-2013.)
|
| ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
| |
| Theorem | lssex 13988 |
Existence of a linear subspace. (Contributed by Jim Kingdon,
27-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| |
| Theorem | lssmex 13989 |
If a linear subspace is inhabited, the class it is built from is a set.
(Contributed by Jim Kingdon, 28-Apr-2025.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| |
| Theorem | lsssetm 13990* |
The set of all (not necessarily closed) linear subspaces of a left
module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario Carneiro, 15-Jul-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
| |
| Theorem | islssm 13991* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
| |
| Theorem | islssmg 13992* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.) Use islssm 13991 instead. (New usage is discouraged.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
| |
| Theorem | islssmd 13993* |
Properties that determine a subspace of a left module or left vector
space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉)
& ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| |
| Theorem | lssssg 13994 |
A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| |
| Theorem | lsselg 13995 |
A subspace member is a vector. (Contributed by NM, 11-Jan-2014.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| |
| Theorem | lss1 13996 |
The set of vectors in a left module is a subspace. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| |
| Theorem | lssuni 13997 |
The union of all subspaces is the vector space. (Contributed by NM,
13-Mar-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| |
| Theorem | lssclg 13998 |
Closure property of a subspace. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvacl 13999 |
Closure of vector addition in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvsubcl 14000 |
Closure of vector subtraction in a subspace. (Contributed by NM,
31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |