ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms GIF version

Theorem isxms 15119
Description: Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isxms (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))

Proof of Theorem isxms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5626 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
2 isms.j . . . 4 𝐽 = (TopOpen‘𝐾)
31, 2eqtr4di 2280 . . 3 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
4 fveq2 5626 . . . . . 6 (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾))
5 fveq2 5626 . . . . . . . 8 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
6 isms.x . . . . . . . 8 𝑋 = (Base‘𝐾)
75, 6eqtr4di 2280 . . . . . . 7 (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋)
87sqxpeqd 4744 . . . . . 6 (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋))
94, 8reseq12d 5005 . . . . 5 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋)))
10 isms.d . . . . 5 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
119, 10eqtr4di 2280 . . . 4 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷)
1211fveq2d 5630 . . 3 (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷))
133, 12eqeq12d 2244 . 2 (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷)))
14 df-xms 15007 . 2 ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
1513, 14elrab2 2962 1 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200   × cxp 4716  cres 4720  cfv 5317  Basecbs 13027  distcds 13114  TopOpenctopn 13268  MetOpencmopn 14499  TopSpctps 14698  ∞MetSpcxms 15004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-res 4730  df-iota 5277  df-fv 5325  df-xms 15007
This theorem is referenced by:  isxms2  15120  xmstopn  15123  xmstps  15125  xmspropd  15145
  Copyright terms: Public domain W3C validator