ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms GIF version

Theorem isxms 14998
Description: Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isxms (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))

Proof of Theorem isxms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5589 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
2 isms.j . . . 4 𝐽 = (TopOpen‘𝐾)
31, 2eqtr4di 2257 . . 3 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
4 fveq2 5589 . . . . . 6 (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾))
5 fveq2 5589 . . . . . . . 8 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
6 isms.x . . . . . . . 8 𝑋 = (Base‘𝐾)
75, 6eqtr4di 2257 . . . . . . 7 (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋)
87sqxpeqd 4709 . . . . . 6 (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋))
94, 8reseq12d 4969 . . . . 5 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋)))
10 isms.d . . . . 5 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
119, 10eqtr4di 2257 . . . 4 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷)
1211fveq2d 5593 . . 3 (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷))
133, 12eqeq12d 2221 . 2 (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷)))
14 df-xms 14886 . 2 ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
1513, 14elrab2 2936 1 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177   × cxp 4681  cres 4685  cfv 5280  Basecbs 12907  distcds 12993  TopOpenctopn 13147  MetOpencmopn 14378  TopSpctps 14577  ∞MetSpcxms 14883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-res 4695  df-iota 5241  df-fv 5288  df-xms 14886
This theorem is referenced by:  isxms2  14999  xmstopn  15002  xmstps  15004  xmspropd  15024
  Copyright terms: Public domain W3C validator