ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp41 GIF version

Theorem exp41 368
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp41.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
exp41 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp41
StepHypRef Expression
1 exp41.1 . . 3 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
21ex 114 . 2 (((𝜑𝜓) ∧ 𝜒) → (𝜃𝜏))
32exp31 362 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  apexp1  10631
  Copyright terms: Public domain W3C validator