ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4d GIF version

Theorem exp4d 369
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4d.1 (𝜑 → ((𝜓 ∧ (𝜒𝜃)) → 𝜏))
Assertion
Ref Expression
exp4d (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4d
StepHypRef Expression
1 exp4d.1 . . 3 (𝜑 → ((𝜓 ∧ (𝜒𝜃)) → 𝜏))
21expd 258 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 366 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  tfrlem9  6310  facdiv  10686  infpnlem1  12324
  Copyright terms: Public domain W3C validator