ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apexp1 GIF version

Theorem apexp1 10789
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
Assertion
Ref Expression
apexp1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))

Proof of Theorem apexp1
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . . . . . 7 (𝑤 = 1 → (𝐴𝑤) = (𝐴↑1))
2 oveq2 5926 . . . . . . 7 (𝑤 = 1 → (𝐵𝑤) = (𝐵↑1))
31, 2breq12d 4042 . . . . . 6 (𝑤 = 1 → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴↑1) # (𝐵↑1)))
43imbi1d 231 . . . . 5 (𝑤 = 1 → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵)))
54imbi2d 230 . . . 4 (𝑤 = 1 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵))))
6 oveq2 5926 . . . . . . 7 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
7 oveq2 5926 . . . . . . 7 (𝑤 = 𝑘 → (𝐵𝑤) = (𝐵𝑘))
86, 7breq12d 4042 . . . . . 6 (𝑤 = 𝑘 → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴𝑘) # (𝐵𝑘)))
98imbi1d 231 . . . . 5 (𝑤 = 𝑘 → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)))
109imbi2d 230 . . . 4 (𝑤 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵))))
11 oveq2 5926 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
12 oveq2 5926 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐵𝑤) = (𝐵↑(𝑘 + 1)))
1311, 12breq12d 4042 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))))
1413imbi1d 231 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵)))
1514imbi2d 230 . . . 4 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))))
16 oveq2 5926 . . . . . . 7 (𝑤 = 𝑁 → (𝐴𝑤) = (𝐴𝑁))
17 oveq2 5926 . . . . . . 7 (𝑤 = 𝑁 → (𝐵𝑤) = (𝐵𝑁))
1816, 17breq12d 4042 . . . . . 6 (𝑤 = 𝑁 → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴𝑁) # (𝐵𝑁)))
1918imbi1d 231 . . . . 5 (𝑤 = 𝑁 → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵)))
2019imbi2d 230 . . . 4 (𝑤 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))))
21 simpl 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2221exp1d 10739 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑1) = 𝐴)
23 simpr 110 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2423exp1d 10739 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑1) = 𝐵)
2522, 24breq12d 4042 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) ↔ 𝐴 # 𝐵))
2625biimpd 144 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵))
27 simpr 110 . . . . . . . 8 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴𝑘) # (𝐵𝑘)) → (𝐴𝑘) # (𝐵𝑘))
28 simpllr 534 . . . . . . . 8 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴𝑘) # (𝐵𝑘)) → ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵))
2927, 28mpd 13 . . . . . . 7 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴𝑘) # (𝐵𝑘)) → 𝐴 # 𝐵)
30 simpr 110 . . . . . . 7 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵)
31 simpr 110 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)))
3221ad3antlr 493 . . . . . . . . . 10 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐴 ∈ ℂ)
33 nnnn0 9247 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3433ad3antrrr 492 . . . . . . . . . 10 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝑘 ∈ ℕ0)
3532, 34expp1d 10745 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3623ad3antlr 493 . . . . . . . . . 10 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐵 ∈ ℂ)
3736, 34expp1d 10745 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
3831, 35, 373brtr3d 4060 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → ((𝐴𝑘) · 𝐴) # ((𝐵𝑘) · 𝐵))
3932, 34expcld 10744 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴𝑘) ∈ ℂ)
4036, 34expcld 10744 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐵𝑘) ∈ ℂ)
41 mulext 8633 . . . . . . . . 9 ((((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐵𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · 𝐴) # ((𝐵𝑘) · 𝐵) → ((𝐴𝑘) # (𝐵𝑘) ∨ 𝐴 # 𝐵)))
4239, 32, 40, 36, 41syl22anc 1250 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (((𝐴𝑘) · 𝐴) # ((𝐵𝑘) · 𝐵) → ((𝐴𝑘) # (𝐵𝑘) ∨ 𝐴 # 𝐵)))
4338, 42mpd 13 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → ((𝐴𝑘) # (𝐵𝑘) ∨ 𝐴 # 𝐵))
4429, 30, 43mpjaodan 799 . . . . . 6 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐴 # 𝐵)
4544exp41 370 . . . . 5 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))))
4645a2d 26 . . . 4 (𝑘 ∈ ℕ → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))))
475, 10, 15, 20, 26, 46nnind 8998 . . 3 (𝑁 ∈ ℕ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵)))
4847impcom 125 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))
49483impa 1196 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875   · cmul 7877   # cap 8600  cn 8982  0cn0 9240  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  logbgcd1irraplemap  15101
  Copyright terms: Public domain W3C validator