ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apexp1 GIF version

Theorem apexp1 10810
Description: Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.)
Assertion
Ref Expression
apexp1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))

Proof of Theorem apexp1
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . 7 (𝑤 = 1 → (𝐴𝑤) = (𝐴↑1))
2 oveq2 5930 . . . . . . 7 (𝑤 = 1 → (𝐵𝑤) = (𝐵↑1))
31, 2breq12d 4046 . . . . . 6 (𝑤 = 1 → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴↑1) # (𝐵↑1)))
43imbi1d 231 . . . . 5 (𝑤 = 1 → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵)))
54imbi2d 230 . . . 4 (𝑤 = 1 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵))))
6 oveq2 5930 . . . . . . 7 (𝑤 = 𝑘 → (𝐴𝑤) = (𝐴𝑘))
7 oveq2 5930 . . . . . . 7 (𝑤 = 𝑘 → (𝐵𝑤) = (𝐵𝑘))
86, 7breq12d 4046 . . . . . 6 (𝑤 = 𝑘 → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴𝑘) # (𝐵𝑘)))
98imbi1d 231 . . . . 5 (𝑤 = 𝑘 → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)))
109imbi2d 230 . . . 4 (𝑤 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵))))
11 oveq2 5930 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴𝑤) = (𝐴↑(𝑘 + 1)))
12 oveq2 5930 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐵𝑤) = (𝐵↑(𝑘 + 1)))
1311, 12breq12d 4046 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))))
1413imbi1d 231 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵)))
1514imbi2d 230 . . . 4 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))))
16 oveq2 5930 . . . . . . 7 (𝑤 = 𝑁 → (𝐴𝑤) = (𝐴𝑁))
17 oveq2 5930 . . . . . . 7 (𝑤 = 𝑁 → (𝐵𝑤) = (𝐵𝑁))
1816, 17breq12d 4046 . . . . . 6 (𝑤 = 𝑁 → ((𝐴𝑤) # (𝐵𝑤) ↔ (𝐴𝑁) # (𝐵𝑁)))
1918imbi1d 231 . . . . 5 (𝑤 = 𝑁 → (((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵) ↔ ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵)))
2019imbi2d 230 . . . 4 (𝑤 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑤) # (𝐵𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))))
21 simpl 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2221exp1d 10760 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑1) = 𝐴)
23 simpr 110 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2423exp1d 10760 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑1) = 𝐵)
2522, 24breq12d 4046 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) ↔ 𝐴 # 𝐵))
2625biimpd 144 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵))
27 simpr 110 . . . . . . . 8 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴𝑘) # (𝐵𝑘)) → (𝐴𝑘) # (𝐵𝑘))
28 simpllr 534 . . . . . . . 8 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴𝑘) # (𝐵𝑘)) → ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵))
2927, 28mpd 13 . . . . . . 7 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴𝑘) # (𝐵𝑘)) → 𝐴 # 𝐵)
30 simpr 110 . . . . . . 7 (((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵)
31 simpr 110 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)))
3221ad3antlr 493 . . . . . . . . . 10 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐴 ∈ ℂ)
33 nnnn0 9256 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3433ad3antrrr 492 . . . . . . . . . 10 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝑘 ∈ ℕ0)
3532, 34expp1d 10766 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3623ad3antlr 493 . . . . . . . . . 10 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐵 ∈ ℂ)
3736, 34expp1d 10766 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
3831, 35, 373brtr3d 4064 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → ((𝐴𝑘) · 𝐴) # ((𝐵𝑘) · 𝐵))
3932, 34expcld 10765 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴𝑘) ∈ ℂ)
4036, 34expcld 10765 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐵𝑘) ∈ ℂ)
41 mulext 8641 . . . . . . . . 9 ((((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐵𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · 𝐴) # ((𝐵𝑘) · 𝐵) → ((𝐴𝑘) # (𝐵𝑘) ∨ 𝐴 # 𝐵)))
4239, 32, 40, 36, 41syl22anc 1250 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (((𝐴𝑘) · 𝐴) # ((𝐵𝑘) · 𝐵) → ((𝐴𝑘) # (𝐵𝑘) ∨ 𝐴 # 𝐵)))
4338, 42mpd 13 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → ((𝐴𝑘) # (𝐵𝑘) ∨ 𝐴 # 𝐵))
4429, 30, 43mpjaodan 799 . . . . . 6 ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐴 # 𝐵)
4544exp41 370 . . . . 5 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))))
4645a2d 26 . . . 4 (𝑘 ∈ ℕ → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑘) # (𝐵𝑘) → 𝐴 # 𝐵)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))))
475, 10, 15, 20, 26, 46nnind 9006 . . 3 (𝑁 ∈ ℕ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵)))
4847impcom 125 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))
49483impa 1196 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # (𝐵𝑁) → 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cc 7877  1c1 7880   + caddc 7882   · cmul 7884   # cap 8608  cn 8990  0cn0 9249  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  logbgcd1irraplemap  15205
  Copyright terms: Public domain W3C validator