| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 1 → (𝐴↑𝑤) = (𝐴↑1)) | 
| 2 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 1 → (𝐵↑𝑤) = (𝐵↑1)) | 
| 3 | 1, 2 | breq12d 4046 | 
. . . . . 6
⊢ (𝑤 = 1 → ((𝐴↑𝑤) # (𝐵↑𝑤) ↔ (𝐴↑1) # (𝐵↑1))) | 
| 4 | 3 | imbi1d 231 | 
. . . . 5
⊢ (𝑤 = 1 → (((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵))) | 
| 5 | 4 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = 1 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵)))) | 
| 6 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝐴↑𝑤) = (𝐴↑𝑘)) | 
| 7 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝐵↑𝑤) = (𝐵↑𝑘)) | 
| 8 | 6, 7 | breq12d 4046 | 
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝐴↑𝑤) # (𝐵↑𝑤) ↔ (𝐴↑𝑘) # (𝐵↑𝑘))) | 
| 9 | 8 | imbi1d 231 | 
. . . . 5
⊢ (𝑤 = 𝑘 → (((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵))) | 
| 10 | 9 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)))) | 
| 11 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝐴↑𝑤) = (𝐴↑(𝑘 + 1))) | 
| 12 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝐵↑𝑤) = (𝐵↑(𝑘 + 1))) | 
| 13 | 11, 12 | breq12d 4046 | 
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → ((𝐴↑𝑤) # (𝐵↑𝑤) ↔ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)))) | 
| 14 | 13 | imbi1d 231 | 
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵))) | 
| 15 | 14 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵)))) | 
| 16 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝐴↑𝑤) = (𝐴↑𝑁)) | 
| 17 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝐵↑𝑤) = (𝐵↑𝑁)) | 
| 18 | 16, 17 | breq12d 4046 | 
. . . . . 6
⊢ (𝑤 = 𝑁 → ((𝐴↑𝑤) # (𝐵↑𝑤) ↔ (𝐴↑𝑁) # (𝐵↑𝑁))) | 
| 19 | 18 | imbi1d 231 | 
. . . . 5
⊢ (𝑤 = 𝑁 → (((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵) ↔ ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵))) | 
| 20 | 19 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑤) # (𝐵↑𝑤) → 𝐴 # 𝐵)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵)))) | 
| 21 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈
ℂ) | 
| 22 | 21 | exp1d 10760 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑1) = 𝐴) | 
| 23 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈
ℂ) | 
| 24 | 23 | exp1d 10760 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑1) = 𝐵) | 
| 25 | 22, 24 | breq12d 4046 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) ↔ 𝐴 # 𝐵)) | 
| 26 | 25 | biimpd 144 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑1) # (𝐵↑1) → 𝐴 # 𝐵)) | 
| 27 |   | simpr 110 | 
. . . . . . . 8
⊢
(((((𝑘 ∈
ℕ ∧ (𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴↑𝑘) # (𝐵↑𝑘)) → (𝐴↑𝑘) # (𝐵↑𝑘)) | 
| 28 |   | simpllr 534 | 
. . . . . . . 8
⊢
(((((𝑘 ∈
ℕ ∧ (𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴↑𝑘) # (𝐵↑𝑘)) → ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) | 
| 29 | 27, 28 | mpd 13 | 
. . . . . . 7
⊢
(((((𝑘 ∈
ℕ ∧ (𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ (𝐴↑𝑘) # (𝐵↑𝑘)) → 𝐴 # 𝐵) | 
| 30 |   | simpr 110 | 
. . . . . . 7
⊢
(((((𝑘 ∈
ℕ ∧ (𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵) | 
| 31 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) | 
| 32 | 21 | ad3antlr 493 | 
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐴 ∈ ℂ) | 
| 33 |   | nnnn0 9256 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) | 
| 34 | 33 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝑘 ∈ ℕ0) | 
| 35 | 32, 34 | expp1d 10766 | 
. . . . . . . . 9
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) | 
| 36 | 23 | ad3antlr 493 | 
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐵 ∈ ℂ) | 
| 37 | 36, 34 | expp1d 10766 | 
. . . . . . . . 9
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) | 
| 38 | 31, 35, 37 | 3brtr3d 4064 | 
. . . . . . . 8
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → ((𝐴↑𝑘) · 𝐴) # ((𝐵↑𝑘) · 𝐵)) | 
| 39 | 32, 34 | expcld 10765 | 
. . . . . . . . 9
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐴↑𝑘) ∈ ℂ) | 
| 40 | 36, 34 | expcld 10765 | 
. . . . . . . . 9
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (𝐵↑𝑘) ∈ ℂ) | 
| 41 |   | mulext 8641 | 
. . . . . . . . 9
⊢ ((((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐵↑𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴↑𝑘) · 𝐴) # ((𝐵↑𝑘) · 𝐵) → ((𝐴↑𝑘) # (𝐵↑𝑘) ∨ 𝐴 # 𝐵))) | 
| 42 | 39, 32, 40, 36, 41 | syl22anc 1250 | 
. . . . . . . 8
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → (((𝐴↑𝑘) · 𝐴) # ((𝐵↑𝑘) · 𝐵) → ((𝐴↑𝑘) # (𝐵↑𝑘) ∨ 𝐴 # 𝐵))) | 
| 43 | 38, 42 | mpd 13 | 
. . . . . . 7
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → ((𝐴↑𝑘) # (𝐵↑𝑘) ∨ 𝐴 # 𝐵)) | 
| 44 | 29, 30, 43 | mpjaodan 799 | 
. . . . . 6
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) ∧ (𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1))) → 𝐴 # 𝐵) | 
| 45 | 44 | exp41 370 | 
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵)))) | 
| 46 | 45 | a2d 26 | 
. . . 4
⊢ (𝑘 ∈ ℕ → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑘) # (𝐵↑𝑘) → 𝐴 # 𝐵)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # (𝐵↑(𝑘 + 1)) → 𝐴 # 𝐵)))) | 
| 47 | 5, 10, 15, 20, 26, 46 | nnind 9006 | 
. . 3
⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵))) | 
| 48 | 47 | impcom 125 | 
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵)) | 
| 49 | 48 | 3impa 1196 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵)) |