ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp4c GIF version

Theorem imp4c 349
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4c (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21impd 252 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32impd 252 1 (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  imp44  354  imp5g  358
  Copyright terms: Public domain W3C validator