![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impd | GIF version |
Description: Importation deduction. (Contributed by NM, 31-Mar-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3l 81 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
3 | 2 | imp 123 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: imp32 254 pm3.31 259 syland 288 imp4c 344 imp4d 345 imp5d 352 expimpd 356 expl 371 pm3.37 829 pm5.6r 877 3expib 1149 sbiedh 1724 equs5 1764 moexexdc 2039 rsp2 2436 moi 2812 reu6 2818 sbciegft 2883 prel12 3637 opthpr 3638 invdisj 3861 sowlin 4171 reusv1 4308 relop 4617 elres 4781 iss 4791 funssres 5090 fv3 5363 funfvima 5565 poxp 6035 tfri3 6170 nndi 6287 nnmass 6288 nnmordi 6315 nnmord 6316 eroveu 6423 fiintim 6719 suplubti 6775 addnq0mo 7103 mulnq0mo 7104 prcdnql 7140 prcunqu 7141 prnmaxl 7144 prnminu 7145 genprndl 7177 genprndu 7178 distrlem1prl 7238 distrlem1pru 7239 distrlem5prl 7242 distrlem5pru 7243 recexprlemss1l 7291 recexprlemss1u 7292 addsrmo 7386 mulsrmo 7387 mulgt0sr 7420 ltleletr 7664 mulgt1 8421 fzind 8960 eqreznegel 9198 fzen 9606 elfzodifsumelfzo 9761 bernneq 10205 mulcn2 10871 divalglemeunn 11364 divalglemeuneg 11366 ndvdssub 11373 algcvgblem 11474 coprmdvds 11517 coprmdvds2 11518 divgcdcoprm0 11526 lmss 12113 lmtopcnp 12117 bj-sbimedh 12396 bj-nnen2lp 12573 |
Copyright terms: Public domain | W3C validator |