Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impd | GIF version |
Description: Importation deduction. (Contributed by NM, 31-Mar-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3l 81 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
3 | 2 | imp 123 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: impcomd 253 imp32 255 pm3.31 260 syland 291 imp4c 349 imp4d 350 imp5d 357 expimpd 361 expl 376 pm3.37 679 pm5.6r 917 3expib 1196 sbiedh 1775 equs5 1817 moexexdc 2098 rsp2 2515 moi 2908 reu6 2914 sbciegft 2980 prel12 3750 opthpr 3751 invdisj 3975 sowlin 4297 reusv1 4435 relop 4753 elres 4919 iss 4929 funssres 5229 fv3 5508 funfvima 5715 poxp 6196 tfri3 6331 nndi 6450 nnmass 6451 nnmordi 6480 nnmord 6481 eroveu 6588 fiintim 6890 suplubti 6961 addnq0mo 7384 mulnq0mo 7385 prcdnql 7421 prcunqu 7422 prnmaxl 7425 prnminu 7426 genprndl 7458 genprndu 7459 distrlem1prl 7519 distrlem1pru 7520 distrlem5prl 7523 distrlem5pru 7524 recexprlemss1l 7572 recexprlemss1u 7573 addsrmo 7680 mulsrmo 7681 mulgt0sr 7715 ltleletr 7976 mulgt1 8754 fzind 9302 eqreznegel 9548 fzen 9974 elfzodifsumelfzo 10132 bernneq 10571 mulcn2 11249 prodmodclem2 11514 dvdsmod0 11729 divalglemeunn 11854 divalglemeuneg 11856 ndvdssub 11863 algcvgblem 11977 coprmdvds 12020 coprmdvds2 12021 divgcdcoprm0 12029 pceu 12223 dvdsprmpweqnn 12263 oddprmdvds 12280 infpnlem1 12285 lmss 12846 lmtopcnp 12850 zabsle1 13500 bj-sbimedh 13612 bj-nnen2lp 13796 |
Copyright terms: Public domain | W3C validator |