ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp4c Unicode version

Theorem imp4c 349
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
imp4c  |-  ( ph  ->  ( ( ( ps 
/\  ch )  /\  th )  ->  ta ) )

Proof of Theorem imp4c
StepHypRef Expression
1 imp4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21impd 252 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( th 
->  ta ) ) )
32impd 252 1  |-  ( ph  ->  ( ( ( ps 
/\  ch )  /\  th )  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  imp44  354  imp5g  358
  Copyright terms: Public domain W3C validator