ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.86i GIF version

Theorem pm2.86i 98
Description: Inference based on pm2.86 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
Hypothesis
Ref Expression
pm2.86i.1 ((𝜑𝜓) → (𝜑𝜒))
Assertion
Ref Expression
pm2.86i (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.86i
StepHypRef Expression
1 ax-1 6 . . 3 (𝜓 → (𝜑𝜓))
2 pm2.86i.1 . . 3 ((𝜑𝜓) → (𝜑𝜒))
31, 2syl 14 . 2 (𝜓 → (𝜑𝜒))
43com12 30 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  nfrimi  1513  cbv1  1733  cbv1v  1735
  Copyright terms: Public domain W3C validator