Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrimi | GIF version |
Description: Moving an antecedent outside Ⅎ. (Contributed by Jim Kingdon, 23-Mar-2018.) |
Ref | Expression |
---|---|
nfrimi.1 | ⊢ Ⅎ𝑥𝜑 |
nfrimi.2 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
nfrimi | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrimi.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfrimi.2 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 → 𝜓) | |
3 | 2 | nfri 1507 | . . . 4 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
4 | 1 | nfri 1507 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) |
5 | ax-5 1435 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
6 | 3, 4, 5 | syl2im 38 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) |
7 | 6 | pm2.86i 98 | . 2 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
8 | 1, 7 | nfd 1511 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: hbsbd 1970 |
Copyright terms: Public domain | W3C validator |