| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfrimi | GIF version | ||
| Description: Moving an antecedent outside Ⅎ. (Contributed by Jim Kingdon, 23-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| nfrimi.1 | ⊢ Ⅎ𝑥𝜑 | 
| nfrimi.2 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| nfrimi | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfrimi.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfrimi.2 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 → 𝜓) | |
| 3 | 2 | nfri 1533 | . . . 4 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| 4 | 1 | nfri 1533 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | 
| 5 | ax-5 1461 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 6 | 3, 4, 5 | syl2im 38 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | 
| 7 | 6 | pm2.86i 99 | . 2 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | 
| 8 | 1, 7 | nfd 1537 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: hbsbd 2001 | 
| Copyright terms: Public domain | W3C validator |