| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbv1v | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| cbv1v.1 | ⊢ Ⅎ𝑥𝜑 |
| cbv1v.2 | ⊢ Ⅎ𝑦𝜑 |
| cbv1v.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbv1v.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| cbv1v.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| cbv1v | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv1v.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbv1v.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 3 | 1, 2 | nfim1 1585 | . . . 4 ⊢ Ⅎ𝑦(𝜑 → 𝜓) |
| 4 | cbv1v.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 5 | cbv1v.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | 4, 5 | nfim1 1585 | . . . 4 ⊢ Ⅎ𝑥(𝜑 → 𝜒) |
| 7 | cbv1v.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
| 8 | 7 | com12 30 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 → 𝜒))) |
| 9 | 8 | a2d 26 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| 10 | 3, 6, 9 | cbv3v 1758 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦(𝜑 → 𝜒)) |
| 11 | 4 | 19.21 1597 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| 12 | 1 | 19.21 1597 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦𝜒)) |
| 13 | 10, 11, 12 | 3imtr3i 200 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑦𝜒)) |
| 14 | 13 | pm2.86i 99 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: cbv2w 1764 |
| Copyright terms: Public domain | W3C validator |