ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.65r GIF version

Theorem pm4.65r 677
Description: One direction of Theorem *4.65 of [WhiteheadRussell] p. 120. The converse holds in classical logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
pm4.65r ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))

Proof of Theorem pm4.65r
StepHypRef Expression
1 annimim 676 1 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-in1 604  ax-in2 605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator