ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  annimim GIF version

Theorem annimim 681
Description: Express conjunction in terms of implication. One direction of Theorem *4.61 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as can be seen at annimdc 932. (Contributed by Jim Kingdon, 24-Dec-2017.)
Assertion
Ref Expression
annimim ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))

Proof of Theorem annimim
StepHypRef Expression
1 pm2.27 40 . . 3 (𝜑 → ((𝜑𝜓) → 𝜓))
2 con3 637 . . 3 (((𝜑𝜓) → 𝜓) → (¬ 𝜓 → ¬ (𝜑𝜓)))
31, 2syl 14 . 2 (𝜑 → (¬ 𝜓 → ¬ (𝜑𝜓)))
43imp 123 1 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-in1 609  ax-in2 610
This theorem is referenced by:  pm4.65r  682  imanim  683  pm4.52im  745  dcim  836  exanaliim  1640
  Copyright terms: Public domain W3C validator