ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imanim GIF version

Theorem imanim 689
Description: Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 890. (Contributed by Jim Kingdon, 24-Dec-2017.)
Assertion
Ref Expression
imanim ((𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem imanim
StepHypRef Expression
1 annimim 687 . 2 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
21con2i 628 1 ((𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  difdif  3272  ssdif0im  3499  inssdif0im  3502  nominpos  9169
  Copyright terms: Public domain W3C validator