Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.1 | GIF version |
Description: Two propositions are equivalent if they are both true. Theorem *5.1 of [WhiteheadRussell] p. 123. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
pm5.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 243 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | |
2 | 1 | biimpa 294 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.35 907 ssconb 3255 |
Copyright terms: Public domain | W3C validator |