ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.1 GIF version

Theorem pm5.1 601
Description: Two propositions are equivalent if they are both true. Theorem *5.1 of [WhiteheadRussell] p. 123. (Contributed by NM, 21-May-1994.)
Assertion
Ref Expression
pm5.1 ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem pm5.1
StepHypRef Expression
1 pm5.501 244 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21biimpa 296 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.35  917  ssconb  3270
  Copyright terms: Public domain W3C validator