ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12dan GIF version

Theorem anim12dan 602
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
anim12dan.1 ((𝜑𝜓) → 𝜒)
anim12dan.2 ((𝜑𝜃) → 𝜏)
Assertion
Ref Expression
anim12dan ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))

Proof of Theorem anim12dan
StepHypRef Expression
1 anim12dan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 115 . . 3 (𝜑 → (𝜓𝜒))
3 anim12dan.2 . . . 4 ((𝜑𝜃) → 𝜏)
43ex 115 . . 3 (𝜑 → (𝜃𝜏))
52, 4anim12d 335 . 2 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
65imp 124 1 ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xpexr2m  5170  isocnv  5941  f1oiso  5956  f1oiso2  5957  f1o2ndf1  6380  xpf1o  7013  pc11  12862  imasaddfnlemg  13355  imasaddflemg  13357  mhmpropd  13507  ghmsub  13796  invrpropdg  14121  znidom  14629  tgclb  14747  innei  14845  txcn  14957  plymullem1  15430  lgsdir2  15720
  Copyright terms: Public domain W3C validator