ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12dan GIF version

Theorem anim12dan 600
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
anim12dan.1 ((𝜑𝜓) → 𝜒)
anim12dan.2 ((𝜑𝜃) → 𝜏)
Assertion
Ref Expression
anim12dan ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))

Proof of Theorem anim12dan
StepHypRef Expression
1 anim12dan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 115 . . 3 (𝜑 → (𝜓𝜒))
3 anim12dan.2 . . . 4 ((𝜑𝜃) → 𝜏)
43ex 115 . . 3 (𝜑 → (𝜃𝜏))
52, 4anim12d 335 . 2 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
65imp 124 1 ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xpexr2m  5112  isocnv  5861  f1oiso  5876  f1oiso2  5877  f1o2ndf1  6295  xpf1o  6914  pc11  12527  imasaddfnlemg  13018  imasaddflemg  13020  mhmpropd  13170  ghmsub  13459  invrpropdg  13783  znidom  14291  tgclb  14387  innei  14485  txcn  14597  plymullem1  15070  lgsdir2  15360
  Copyright terms: Public domain W3C validator