ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12dan GIF version

Theorem anim12dan 600
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
anim12dan.1 ((𝜑𝜓) → 𝜒)
anim12dan.2 ((𝜑𝜃) → 𝜏)
Assertion
Ref Expression
anim12dan ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))

Proof of Theorem anim12dan
StepHypRef Expression
1 anim12dan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 115 . . 3 (𝜑 → (𝜓𝜒))
3 anim12dan.2 . . . 4 ((𝜑𝜃) → 𝜏)
43ex 115 . . 3 (𝜑 → (𝜃𝜏))
52, 4anim12d 335 . 2 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
65imp 124 1 ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xpexr2m  5072  isocnv  5814  f1oiso  5829  f1oiso2  5830  f1o2ndf1  6231  xpf1o  6846  pc11  12332  imasaddfnlemg  12740  imasaddflemg  12742  mhmpropd  12862  invrpropdg  13323  tgclb  13650  innei  13748  txcn  13860  lgsdir2  14519
  Copyright terms: Public domain W3C validator