ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim12dan GIF version

Theorem anim12dan 602
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
anim12dan.1 ((𝜑𝜓) → 𝜒)
anim12dan.2 ((𝜑𝜃) → 𝜏)
Assertion
Ref Expression
anim12dan ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))

Proof of Theorem anim12dan
StepHypRef Expression
1 anim12dan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 115 . . 3 (𝜑 → (𝜓𝜒))
3 anim12dan.2 . . . 4 ((𝜑𝜃) → 𝜏)
43ex 115 . . 3 (𝜑 → (𝜃𝜏))
52, 4anim12d 335 . 2 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
65imp 124 1 ((𝜑 ∧ (𝜓𝜃)) → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xpexr2m  5146  isocnv  5908  f1oiso  5923  f1oiso2  5924  f1o2ndf1  6344  xpf1o  6973  pc11  12820  imasaddfnlemg  13313  imasaddflemg  13315  mhmpropd  13465  ghmsub  13754  invrpropdg  14078  znidom  14586  tgclb  14704  innei  14802  txcn  14914  plymullem1  15387  lgsdir2  15677
  Copyright terms: Public domain W3C validator