ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssconb GIF version

Theorem ssconb 3133
Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
ssconb ((𝐴𝐶𝐵𝐶) → (𝐴 ⊆ (𝐶𝐵) ↔ 𝐵 ⊆ (𝐶𝐴)))

Proof of Theorem ssconb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3019 . . . . . . 7 (𝐴𝐶 → (𝑥𝐴𝑥𝐶))
2 ssel 3019 . . . . . . 7 (𝐵𝐶 → (𝑥𝐵𝑥𝐶))
3 pm5.1 568 . . . . . . 7 (((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐵𝑥𝐶)) → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
41, 2, 3syl2an 283 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
5 con2b 628 . . . . . . 7 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐵 → ¬ 𝑥𝐴))
65a1i 9 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐵 → ¬ 𝑥𝐴)))
74, 6anbi12d 457 . . . . 5 ((𝐴𝐶𝐵𝐶) → (((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐴 → ¬ 𝑥𝐵)) ↔ ((𝑥𝐵𝑥𝐶) ∧ (𝑥𝐵 → ¬ 𝑥𝐴))))
8 jcab 570 . . . . 5 ((𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐴 → ¬ 𝑥𝐵)))
9 jcab 570 . . . . 5 ((𝑥𝐵 → (𝑥𝐶 ∧ ¬ 𝑥𝐴)) ↔ ((𝑥𝐵𝑥𝐶) ∧ (𝑥𝐵 → ¬ 𝑥𝐴)))
107, 8, 93bitr4g 221 . . . 4 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)) ↔ (𝑥𝐵 → (𝑥𝐶 ∧ ¬ 𝑥𝐴))))
11 eldif 3008 . . . . 5 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
1211imbi2i 224 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
13 eldif 3008 . . . . 5 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
1413imbi2i 224 . . . 4 ((𝑥𝐵𝑥 ∈ (𝐶𝐴)) ↔ (𝑥𝐵 → (𝑥𝐶 ∧ ¬ 𝑥𝐴)))
1510, 12, 143bitr4g 221 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐵𝑥 ∈ (𝐶𝐴))))
1615albidv 1752 . 2 ((𝐴𝐶𝐵𝐶) → (∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ ∀𝑥(𝑥𝐵𝑥 ∈ (𝐶𝐴))))
17 dfss2 3014 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
18 dfss2 3014 . 2 (𝐵 ⊆ (𝐶𝐴) ↔ ∀𝑥(𝑥𝐵𝑥 ∈ (𝐶𝐴)))
1916, 17, 183bitr4g 221 1 ((𝐴𝐶𝐵𝐶) → (𝐴 ⊆ (𝐶𝐵) ↔ 𝐵 ⊆ (𝐶𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wal 1287  wcel 1438  cdif 2996  wss 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 3001  df-in 3005  df-ss 3012
This theorem is referenced by:  sbthlem1  6666  sbthlem2  6667  setscom  11534
  Copyright terms: Public domain W3C validator