ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl31 GIF version

Theorem simpl31 1067
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl31 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜑)

Proof of Theorem simpl31
StepHypRef Expression
1 simp31 1022 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
21adantr 274 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator