ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl133anc GIF version

Theorem syl133anc 1251
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
sylXanc.6 (𝜑𝜁)
sylXanc.7 (𝜑𝜎)
syl133anc.8 ((𝜓 ∧ (𝜒𝜃𝜏) ∧ (𝜂𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl133anc (𝜑𝜌)

Proof of Theorem syl133anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . 2 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
6 sylXanc.6 . . 3 (𝜑𝜁)
7 sylXanc.7 . . 3 (𝜑𝜎)
85, 6, 73jca 1167 . 2 (𝜑 → (𝜂𝜁𝜎))
9 syl133anc.8 . 2 ((𝜓 ∧ (𝜒𝜃𝜏) ∧ (𝜂𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 8, 9syl131anc 1241 1 (𝜑𝜌)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  syl233anc  1257
  Copyright terms: Public domain W3C validator