Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl223anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
sylXanc.5 | ⊢ (𝜑 → 𝜂) |
sylXanc.6 | ⊢ (𝜑 → 𝜁) |
sylXanc.7 | ⊢ (𝜑 → 𝜎) |
syl223anc.8 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl223anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 304 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | sylXanc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | sylXanc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | sylXanc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
9 | syl223anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 5, 6, 7, 8, 9 | syl213anc 1247 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |