| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl223anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| sylXanc.5 | ⊢ (𝜑 → 𝜂) |
| sylXanc.6 | ⊢ (𝜑 → 𝜁) |
| sylXanc.7 | ⊢ (𝜑 → 𝜎) |
| syl223anc.8 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl223anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | sylXanc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | sylXanc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | sylXanc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
| 9 | syl223anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 5, 6, 7, 8, 9 | syl213anc 1268 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |