ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanblc GIF version

Theorem sylanblc 413
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblc.1 (𝜑𝜓)
sylanblc.2 𝜒
sylanblc.3 ((𝜓𝜒) ↔ 𝜃)
Assertion
Ref Expression
sylanblc (𝜑𝜃)

Proof of Theorem sylanblc
StepHypRef Expression
1 sylanblc.1 . 2 (𝜑𝜓)
2 sylanblc.2 . 2 𝜒
3 sylanblc.3 . . 3 ((𝜓𝜒) ↔ 𝜃)
43biimpi 119 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 411 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator