Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanblc | GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblc.1 | ⊢ (𝜑 → 𝜓) |
sylanblc.2 | ⊢ 𝜒 |
sylanblc.3 | ⊢ ((𝜓 ∧ 𝜒) ↔ 𝜃) |
Ref | Expression |
---|---|
sylanblc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblc.2 | . 2 ⊢ 𝜒 | |
3 | sylanblc.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ 𝜃) | |
4 | 3 | biimpi 119 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 2, 4 | sylancl 410 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |