ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanblrc GIF version

Theorem sylanblrc 416
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
Hypotheses
Ref Expression
sylanblrc.1 (𝜑𝜓)
sylanblrc.2 𝜒
sylanblrc.3 (𝜃 ↔ (𝜓𝜒))
Assertion
Ref Expression
sylanblrc (𝜑𝜃)

Proof of Theorem sylanblrc
StepHypRef Expression
1 sylanblrc.1 . 2 (𝜑𝜓)
2 sylanblrc.2 . 2 𝜒
3 sylanblrc.3 . . 3 (𝜃 ↔ (𝜓𝜒))
43biimpri 133 . 2 ((𝜓𝜒) → 𝜃)
51, 2, 4sylancl 413 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cosmul  11755  ismgmid  12801  mndideu  12832  cdivcncfap  14172  dvrecap  14262
  Copyright terms: Public domain W3C validator