![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylanblrc | GIF version |
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.) |
Ref | Expression |
---|---|
sylanblrc.1 | ⊢ (𝜑 → 𝜓) |
sylanblrc.2 | ⊢ 𝜒 |
sylanblrc.3 | ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
sylanblrc | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylanblrc.2 | . 2 ⊢ 𝜒 | |
3 | sylanblrc.3 | . . 3 ⊢ (𝜃 ↔ (𝜓 ∧ 𝜒)) | |
4 | 3 | biimpri 133 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: cosmul 11755 ismgmid 12801 mndideu 12832 cdivcncfap 14172 dvrecap 14262 |
Copyright terms: Public domain | W3C validator |