 Home Intuitionistic Logic ExplorerTheorem List (p. 5 of 114) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 401-500   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremsylan9 401 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜒𝜏))       ((𝜑𝜃) → (𝜓𝜏))

Theoremsylan9r 402 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜒𝜏))       ((𝜃𝜑) → (𝜓𝜏))

Theoremsyl2anc 403 Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012.)
(𝜑𝜓)    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancl 404 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝜑𝜓)    &   𝜒    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancr 405 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝜓    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylanblc 406 Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
(𝜑𝜓)    &   𝜒    &   ((𝜓𝜒) ↔ 𝜃)       (𝜑𝜃)

Theoremsylanblrc 407 Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
(𝜑𝜓)    &   𝜒    &   (𝜃 ↔ (𝜓𝜒))       (𝜑𝜃)

Theoremsylanbrc 408 Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜃 ↔ (𝜓𝜒))       (𝜑𝜃)

Theoremsylancb 409 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
(𝜑𝜓)    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancbr 410 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
(𝜓𝜑)    &   (𝜒𝜑)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancom 411 Syllogism inference with commutation of antecents. (Contributed by NM, 2-Jul-2008.)
((𝜑𝜓) → 𝜒)    &   ((𝜒𝜓) → 𝜃)       ((𝜑𝜓) → 𝜃)

Theoremmpdan 412 An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
(𝜑𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)

Theoremmpancom 413 An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
(𝜓𝜑)    &   ((𝜑𝜓) → 𝜒)       (𝜓𝜒)

Theoremmpidan 414 A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
(𝜑𝜒)    &   (((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)

Theoremmpan 415 An inference based on modus ponens. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
𝜑    &   ((𝜑𝜓) → 𝜒)       (𝜓𝜒)

Theoremmpan2 416 An inference based on modus ponens. (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
𝜓    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)

Theoremmp2an 417 An inference based on modus ponens. (Contributed by NM, 13-Apr-1995.)
𝜑    &   𝜓    &   ((𝜑𝜓) → 𝜒)       𝜒

Theoremmp4an 418 An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.)
𝜑    &   𝜓    &   𝜒    &   𝜃    &   (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)       𝜏

Theoremmpan2d 419 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
(𝜑𝜒)    &   (𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑 → (𝜓𝜃))

Theoremmpand 420 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
(𝜑𝜓)    &   (𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑 → (𝜒𝜃))

Theoremmpani 421 An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
𝜓    &   (𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑 → (𝜒𝜃))

Theoremmpan2i 422 An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
𝜒    &   (𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑 → (𝜓𝜃))

Theoremmp2ani 423 An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
𝜓    &   𝜒    &   (𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑𝜃)

Theoremmp2and 424 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑𝜃)

Theoremmpanl1 425 An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
𝜑    &   (((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((𝜓𝜒) → 𝜃)

Theoremmpanl2 426 An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
𝜓    &   (((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((𝜑𝜒) → 𝜃)

Theoremmpanl12 427 An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.)
𝜑    &   𝜓    &   (((𝜑𝜓) ∧ 𝜒) → 𝜃)       (𝜒𝜃)

Theoremmpanr1 428 An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
𝜓    &   ((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑𝜒) → 𝜃)

Theoremmpanr2 429 An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
𝜒    &   ((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑𝜓) → 𝜃)

Theoremmpanr12 430 An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.)
𝜓    &   𝜒    &   ((𝜑 ∧ (𝜓𝜒)) → 𝜃)       (𝜑𝜃)

Theoremmpanlr1 431 An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
𝜓    &   (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)       (((𝜑𝜒) ∧ 𝜃) → 𝜏)

Theorempm5.74da 432 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 4-May-2007.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Theoremimdistan 433 Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Theoremimdistani 434 Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) → (𝜑𝜒))

Theoremimdistanri 435 Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
(𝜑 → (𝜓𝜒))       ((𝜓𝜑) → (𝜒𝜑))

Theoremimdistand 436 Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Theoremimdistanda 437 Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Theorempm5.32d 438 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Theorempm5.32rd 439 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 25-Dec-2004.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Theorempm5.32da 440 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 9-Dec-2006.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Theorempm5.32 441 Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) (Revised by NM, 31-Jan-2015.)
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))

Theorempm5.32i 442 Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.)
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) ↔ (𝜑𝜒))

Theorempm5.32ri 443 Distribution of implication over biconditional (inference rule). (Contributed by NM, 12-Mar-1995.)
(𝜑 → (𝜓𝜒))       ((𝜓𝜑) ↔ (𝜒𝜑))

Theorembiadan2 444 Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.)
(𝜑𝜓)    &   (𝜓 → (𝜑𝜒))       (𝜑 ↔ (𝜓𝜒))

Theoremanbi2i 445 Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))

Theoremanbi1i 446 Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))

Theoremanbi2ci 447 Variant of anbi2i 445 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜒𝜓))

Theoremanbi12i 448 Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)    &   (𝜒𝜃)       ((𝜑𝜒) ↔ (𝜓𝜃))

Theoremanbi12ci 449 Variant of anbi12i 448 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝜓)    &   (𝜒𝜃)       ((𝜑𝜒) ↔ (𝜃𝜓))

Theoremsylan9bb 450 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜒𝜏))       ((𝜑𝜃) → (𝜓𝜏))

Theoremsylan9bbr 451 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜒𝜏))       ((𝜃𝜑) → (𝜓𝜏))

Theoremanbi2d 452 Deduction adding a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))

Theoremanbi1d 453 Deduction adding a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))

Theoremanbi1 454 Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Theoremanbi2 455 Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 16-Nov-2013.)
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Theorembitr 456 Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))

Theoremanbi12d 457 Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜏))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))

Theoremmpan10 458 Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓𝜒))

Theorempm5.3 459 Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Theoremadantll 460 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
((𝜑𝜓) → 𝜒)       (((𝜃𝜑) ∧ 𝜓) → 𝜒)

Theoremadantlr 461 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
((𝜑𝜓) → 𝜒)       (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Theoremadantrl 462 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
((𝜑𝜓) → 𝜒)       ((𝜑 ∧ (𝜃𝜓)) → 𝜒)

Theoremadantrr 463 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
((𝜑𝜓) → 𝜒)       ((𝜑 ∧ (𝜓𝜃)) → 𝜒)

Theoremadantlll 464 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((((𝜏𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃)

Theoremadantllr 465 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)

Theoremadantlrl 466 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)

Theoremadantlrr 467 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (((𝜑 ∧ (𝜓𝜏)) ∧ 𝜒) → 𝜃)

Theoremadantrll 468 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ ((𝜏𝜓) ∧ 𝜒)) → 𝜃)

Theoremadantrlr 469 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ ((𝜓𝜏) ∧ 𝜒)) → 𝜃)

Theoremadantrrl 470 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ (𝜓 ∧ (𝜏𝜒))) → 𝜃)

Theoremadantrrr 471 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)

Theoremad2antrr 472 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
(𝜑𝜓)       (((𝜑𝜒) ∧ 𝜃) → 𝜓)

Theoremad2antlr 473 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
(𝜑𝜓)       (((𝜒𝜑) ∧ 𝜃) → 𝜓)

Theoremad2antrl 474 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
(𝜑𝜓)       ((𝜒 ∧ (𝜑𝜃)) → 𝜓)

Theoremad2antll 475 Deduction adding conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
(𝜑𝜓)       ((𝜒 ∧ (𝜃𝜑)) → 𝜓)

Theoremad3antrrr 476 Deduction adding three conjuncts to antecedent. (Contributed by NM, 28-Jul-2012.)
(𝜑𝜓)       ((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Theoremad3antlr 477 Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       ((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Theoremad4antr 478 Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       (((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓)

Theoremad4antlr 479 Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       (((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓)

Theoremad5antr 480 Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       ((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Theoremad5antlr 481 Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Theoremad6antr 482 Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       (((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Theoremad6antlr 483 Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       (((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Theoremad7antr 484 Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Theoremad7antlr 485 Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       ((((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Theoremad8antr 486 Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)

Theoremad8antlr 487 Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       (((((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)

Theoremad9antr 488 Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       ((((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓)

Theoremad9antlr 489 Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       ((((((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓)

Theoremad10antr 490 Deduction adding 10 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝜓)       (((((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓)

Theoremad10antlr 491 Deduction adding 10 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝜓)       (((((((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓)

Theoremad2ant2l 492 Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.)
((𝜑𝜓) → 𝜒)       (((𝜃𝜑) ∧ (𝜏𝜓)) → 𝜒)

Theoremad2ant2r 493 Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.)
((𝜑𝜓) → 𝜒)       (((𝜑𝜃) ∧ (𝜓𝜏)) → 𝜒)

Theoremad2ant2lr 494 Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.)
((𝜑𝜓) → 𝜒)       (((𝜃𝜑) ∧ (𝜓𝜏)) → 𝜒)

Theoremad2ant2rl 495 Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.)
((𝜑𝜓) → 𝜒)       (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)

Theoremsimpll 496 Simplification of a conjunction. (Contributed by NM, 18-Mar-2007.)
(((𝜑𝜓) ∧ 𝜒) → 𝜑)

Theoremsimplr 497 Simplification of a conjunction. (Contributed by NM, 20-Mar-2007.)
(((𝜑𝜓) ∧ 𝜒) → 𝜓)

Theoremsimprl 498 Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
((𝜑 ∧ (𝜓𝜒)) → 𝜓)

Theoremsimprr 499 Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
((𝜑 ∧ (𝜓𝜒)) → 𝜒)

Theoremsimplll 500 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11370
 Copyright terms: Public domain < Previous  Next >