MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5d Structured version   Visualization version   GIF version

Theorem ax5d 1919
Description: Version of ax-5 1918 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders. (Contributed by NM, 1-Mar-2013.)
Assertion
Ref Expression
ax5d (𝜑 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ax5d
StepHypRef Expression
1 ax-5 1918 . 2 (𝜓 → ∀𝑥𝜓)
21a1i 11 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-5 1918
This theorem is referenced by:  ax13w  2138
  Copyright terms: Public domain W3C validator