![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version |
Description: A rephrasing of ax-5 1869 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1869 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
2 | eximal 1745 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
3 | 1, 2 | mpbir 223 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1505 ∃wex 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1869 |
This theorem depends on definitions: df-bi 199 df-ex 1743 |
This theorem is referenced by: ax5ea 1872 exlimiv 1889 exlimdv 1892 19.21v 1898 19.23v 1901 19.36imv 1904 19.41v 1908 19.9v 1938 aeveq 2005 sbv 2040 relopabi 5544 bj-cbvalim 33492 bj-cbvexim 33493 bj-cbvexivw 33521 bj-eqs 33524 bj-nnfv 33786 bj-snsetex 33799 bj-snglss 33806 topdifinffinlem 34076 ac6s6f 34901 fnchoice 40711 |
Copyright terms: Public domain | W3C validator |