| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version | ||
| Description: A rephrasing of ax-5 1911 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
| 2 | eximal 1783 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: ax5ea 1914 exlimiv 1931 exlimdv 1934 19.21v 1940 19.23v 1943 19.36imv 1946 19.41v 1950 19.9v 1985 aeveq 2059 sbv 2091 sbequ2 2252 mo4 2561 rspn0 4306 relopabi 5762 lfuhgr3 35152 bj-cbvalim 36678 bj-cbvexim 36679 bj-cbvexivw 36705 bj-eqs 36708 bj-nnfv 36787 bj-snsetex 36996 bj-snglss 37003 topdifinffinlem 37380 ac6s6f 38212 ismnushort 44333 fnchoice 45065 ormklocald 46911 natlocalincr 46913 |
| Copyright terms: Public domain | W3C validator |