MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5e Structured version   Visualization version   GIF version

Theorem ax5e 1871
Description: A rephrasing of ax-5 1869 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax5e (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5e
StepHypRef Expression
1 ax-5 1869 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 eximal 1745 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2mpbir 223 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1505  wex 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1869
This theorem depends on definitions:  df-bi 199  df-ex 1743
This theorem is referenced by:  ax5ea  1872  exlimiv  1889  exlimdv  1892  19.21v  1898  19.23v  1901  19.36imv  1904  19.41v  1908  19.9v  1938  aeveq  2005  sbv  2040  relopabi  5544  bj-cbvalim  33492  bj-cbvexim  33493  bj-cbvexivw  33521  bj-eqs  33524  bj-nnfv  33786  bj-snsetex  33799  bj-snglss  33806  topdifinffinlem  34076  ac6s6f  34901  fnchoice  40711
  Copyright terms: Public domain W3C validator