MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5e Structured version   Visualization version   GIF version

Theorem ax5e 1913
Description: A rephrasing of ax-5 1911 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax5e (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5e
StepHypRef Expression
1 ax-5 1911 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 eximal 1783 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2mpbir 231 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  ax5ea  1914  exlimiv  1931  exlimdv  1934  19.21v  1940  19.23v  1943  19.36imv  1946  19.41v  1950  19.9v  1985  aeveq  2059  sbv  2093  sbequ2  2254  mo4  2563  rspn0  4305  relopabi  5766  lfuhgr3  35185  bj-cbvalim  36710  bj-cbvexim  36711  bj-cbvexivw  36737  bj-eqs  36740  bj-nnfv  36819  bj-snsetex  37028  bj-snglss  37035  topdifinffinlem  37412  ac6s6f  38233  ismnushort  44418  fnchoice  45150  ormklocald  46996  natlocalincr  46998
  Copyright terms: Public domain W3C validator