Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version |
Description: A rephrasing of ax-5 1913 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
2 | eximal 1785 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: ax5ea 1916 exlimiv 1933 exlimdv 1936 19.21v 1942 19.23v 1945 19.36imv 1948 19.36imvOLD 1949 19.41v 1953 19.9v 1987 aeveq 2059 sbv 2091 sbequ2 2241 mo4 2566 rspn0 4286 relopabi 5732 lfuhgr3 33081 bj-cbvalim 34826 bj-cbvexim 34827 bj-cbvexivw 34853 bj-eqs 34856 bj-nnfv 34936 bj-snsetex 35153 bj-snglss 35160 topdifinffinlem 35518 ac6s6f 36331 ismnushort 41919 fnchoice 42572 natlocalincr 46511 |
Copyright terms: Public domain | W3C validator |