MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5e Structured version   Visualization version   GIF version

Theorem ax5e 1916
Description: A rephrasing of ax-5 1914 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax5e (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5e
StepHypRef Expression
1 ax-5 1914 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 eximal 1786 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2mpbir 230 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  ax5ea  1917  exlimiv  1934  exlimdv  1937  19.21v  1943  19.23v  1946  19.36imv  1949  19.36imvOLD  1950  19.41v  1954  19.9v  1988  aeveq  2060  sbv  2092  sbequ2  2244  mo4  2566  rspn0  4283  relopabi  5721  lfuhgr3  32981  bj-cbvalim  34753  bj-cbvexim  34754  bj-cbvexivw  34780  bj-eqs  34783  bj-nnfv  34863  bj-snsetex  35080  bj-snglss  35087  topdifinffinlem  35445  ac6s6f  36258  ismnushort  41808  fnchoice  42461
  Copyright terms: Public domain W3C validator