MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5e Structured version   Visualization version   GIF version

Theorem ax5e 1915
Description: A rephrasing of ax-5 1913 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax5e (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5e
StepHypRef Expression
1 ax-5 1913 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 eximal 1785 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2mpbir 230 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  ax5ea  1916  exlimiv  1933  exlimdv  1936  19.21v  1942  19.23v  1945  19.36imv  1948  19.36imvOLD  1949  19.41v  1953  19.9v  1987  aeveq  2059  sbv  2091  sbequ2  2241  mo4  2566  rspn0  4286  relopabi  5732  lfuhgr3  33081  bj-cbvalim  34826  bj-cbvexim  34827  bj-cbvexivw  34853  bj-eqs  34856  bj-nnfv  34936  bj-snsetex  35153  bj-snglss  35160  topdifinffinlem  35518  ac6s6f  36331  ismnushort  41919  fnchoice  42572  natlocalincr  46511
  Copyright terms: Public domain W3C validator