MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5e Structured version   Visualization version   GIF version

Theorem ax5e 1912
Description: A rephrasing of ax-5 1910 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax5e (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5e
StepHypRef Expression
1 ax-5 1910 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 eximal 1782 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2mpbir 231 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  ax5ea  1913  exlimiv  1930  exlimdv  1933  19.21v  1939  19.23v  1942  19.36imv  1945  19.41v  1949  19.9v  1983  aeveq  2056  sbv  2088  sbequ2  2249  mo4  2565  rspn0  4331  relopabi  5801  lfuhgr3  35142  bj-cbvalim  36663  bj-cbvexim  36664  bj-cbvexivw  36690  bj-eqs  36693  bj-nnfv  36772  bj-snsetex  36981  bj-snglss  36988  topdifinffinlem  37365  ac6s6f  38197  ismnushort  44325  fnchoice  45053  ormklocald  46903  natlocalincr  46905
  Copyright terms: Public domain W3C validator