![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version |
Description: A rephrasing of ax-5 1908 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1908 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
2 | eximal 1779 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: ax5ea 1911 exlimiv 1928 exlimdv 1931 19.21v 1937 19.23v 1940 19.36imv 1943 19.41v 1947 19.9v 1981 aeveq 2054 sbv 2086 sbequ2 2247 mo4 2564 rspn0 4362 relopabi 5835 lfuhgr3 35104 bj-cbvalim 36628 bj-cbvexim 36629 bj-cbvexivw 36655 bj-eqs 36658 bj-nnfv 36737 bj-snsetex 36946 bj-snglss 36953 topdifinffinlem 37330 ac6s6f 38160 ismnushort 44297 fnchoice 44967 natlocalincr 46830 |
Copyright terms: Public domain | W3C validator |