| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version | ||
| Description: A rephrasing of ax-5 1911 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
| 2 | eximal 1783 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: ax5ea 1914 exlimiv 1931 exlimdv 1934 19.21v 1940 19.23v 1943 19.36imv 1946 19.41v 1950 19.9v 1985 aeveq 2059 sbv 2093 sbequ2 2254 mo4 2563 rspn0 4305 relopabi 5766 lfuhgr3 35185 bj-cbvalim 36710 bj-cbvexim 36711 bj-cbvexivw 36737 bj-eqs 36740 bj-nnfv 36819 bj-snsetex 37028 bj-snglss 37035 topdifinffinlem 37412 ac6s6f 38233 ismnushort 44418 fnchoice 45150 ormklocald 46996 natlocalincr 46998 |
| Copyright terms: Public domain | W3C validator |