MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5e Structured version   Visualization version   GIF version

Theorem ax5e 1913
Description: A rephrasing of ax-5 1911 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
ax5e (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ax5e
StepHypRef Expression
1 ax-5 1911 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 eximal 1783 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2mpbir 231 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  ax5ea  1914  exlimiv  1931  exlimdv  1934  19.21v  1940  19.23v  1943  19.36imv  1946  19.41v  1950  19.9v  1985  aeveq  2059  sbv  2091  sbequ2  2252  mo4  2561  rspn0  4306  relopabi  5762  lfuhgr3  35152  bj-cbvalim  36678  bj-cbvexim  36679  bj-cbvexivw  36705  bj-eqs  36708  bj-nnfv  36787  bj-snsetex  36996  bj-snglss  37003  topdifinffinlem  37380  ac6s6f  38212  ismnushort  44333  fnchoice  45065  ormklocald  46911  natlocalincr  46913
  Copyright terms: Public domain W3C validator