Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version |
Description: A rephrasing of ax-5 1914 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
2 | eximal 1786 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: ax5ea 1917 exlimiv 1934 exlimdv 1937 19.21v 1943 19.23v 1946 19.36imv 1949 19.36imvOLD 1950 19.41v 1954 19.9v 1988 aeveq 2060 sbv 2092 sbequ2 2244 mo4 2566 rspn0 4283 relopabi 5721 lfuhgr3 32981 bj-cbvalim 34753 bj-cbvexim 34754 bj-cbvexivw 34780 bj-eqs 34783 bj-nnfv 34863 bj-snsetex 35080 bj-snglss 35087 topdifinffinlem 35445 ac6s6f 36258 ismnushort 41808 fnchoice 42461 |
Copyright terms: Public domain | W3C validator |