Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bijust00 Structured version   Visualization version   GIF version

Theorem bj-bijust00 34737
Description: A self-implication does not imply the negation of a self-implication. Most general theorem of which bijust 204 is an instance (bijust0 203 and bj-bijust0ALT 34736 are therefore also instances of it). (Contributed by BJ, 7-Sep-2022.)
Assertion
Ref Expression
bj-bijust00 ¬ ((𝜑𝜑) → ¬ (𝜓𝜓))

Proof of Theorem bj-bijust00
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 id 22 . 2 (𝜓𝜓)
3 pm3.2im 160 . 2 ((𝜑𝜑) → ((𝜓𝜓) → ¬ ((𝜑𝜑) → ¬ (𝜓𝜓))))
41, 2, 3mp2 9 1 ¬ ((𝜑𝜑) → ¬ (𝜓𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator