| Metamath
Proof Explorer Theorem List (p. 358 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-psl 35701* | Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring 𝑟, a strict order on 𝑟, and a sequence 𝑝:ℕ⟶(𝒫 𝑟 ∩ Fin) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ ⦋(1st ‘𝑔) / 𝑒⦌⦋(1st ‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾ (Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘ 𝑓))) | ||
| Syntax | czr 35702 | Integral elements of a ring. |
| class ZRing | ||
| Syntax | cgf 35703 | Galois finite field. |
| class GF | ||
| Syntax | cgfo 35704 | Galois limit field. |
| class GF∞ | ||
| Syntax | ceqp 35705 | Equivalence relation for df-qp 35716. |
| class ~Qp | ||
| Syntax | crqp 35706 | Equivalence relation representatives for df-qp 35716. |
| class /Qp | ||
| Syntax | cqp 35707 | The set of 𝑝-adic rational numbers. |
| class Qp | ||
| Syntax | czp 35708 | The set of 𝑝-adic integers. (Not to be confused with czn 21449.) |
| class Zp | ||
| Syntax | cqpa 35709 | Algebraic completion of the 𝑝-adic rational numbers. |
| class _Qp | ||
| Syntax | ccp 35710 | Metric completion of _Qp. |
| class Cp | ||
| Definition | df-zrng 35711 | Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) | ||
| Definition | df-gf 35712* | Define the Galois finite field of order 𝑝↑𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
| Definition | df-gfoo 35713* | Define the Galois field of order 𝑝↑+∞, as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ GF∞ = (𝑝 ∈ ℙ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
| Definition | df-eqp 35714* | Define an equivalence relation on ℤ-indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum Σ𝑘 ≤ 𝑛𝑓(𝑘)(𝑝↑𝑘) is a multiple of 𝑝↑(𝑛 + 1) for every 𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) | ||
| Definition | df-rqp 35715* | There is a unique element of (ℤ ↑m (0...(𝑝 − 1))) ~Qp -equivalent to any element of (ℤ ↑m ℤ), if the sequences are zero for sufficiently large negative values; this function selects that element. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ ⦋{𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1))))))) | ||
| Definition | df-qp 35716* | Define the 𝑝-adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 10-Oct-2021.) |
| ⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ, < )))))) | ||
| Definition | df-zp 35717 | Define the 𝑝-adic integers, as a subset of the 𝑝-adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ Zp = (ZRing ∘ Qp) | ||
| Definition | df-qpa 35718* | Define the completion of the 𝑝-adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the 𝑛-th set the collection of polynomials with degree less than 𝑛 and with coefficients < (𝑝↑𝑛)). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial 𝑥↑(𝑝↑𝑛) − 𝑥, which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ _Qp = (𝑝 ∈ ℙ ↦ ⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))}))) | ||
| Definition | df-cp 35719 | Define the metric completion of the algebraic completion of the 𝑝 -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ Cp = ( cplMetSp ∘ _Qp) | ||
I hope someone will enjoy solving (proving) the simple equations, inequalities, and calculations from this mathbox. I have proved these problems (theorems) using the Milpgame proof assistant. (It can be downloaded from https://us.metamath.org/other/milpgame/milpgame.html.) | ||
| Theorem | problem1 35720 | Practice problem 1. Clues: 5p4e9 12288 3p2e5 12281 eqtri 2756 oveq1i 7365. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ ((3 + 2) + 4) = 9 | ||
| Theorem | problem2 35721 | Practice problem 2. Clues: oveq12i 7367 adddiri 11135 add4i 11348 mulcli 11129 recni 11136 2re 12209 3eqtri 2760 10re 12617 5re 12222 1re 11122 4re 12219 eqcomi 2742 5p4e9 12288 oveq1i 7365 df-3 12199. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
| ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) | ||
| Theorem | problem3 35722 | Practice problem 3. Clues: eqcomi 2742 eqtri 2756 subaddrii 11460 recni 11136 4re 12219 3re 12215 1re 11122 df-4 12200 addcomi 11314. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ (𝐴 + 3) = 4 ⇒ ⊢ 𝐴 = 1 | ||
| Theorem | problem4 35723 | Practice problem 4. Clues: pm3.2i 470 eqcomi 2742 eqtri 2756 subaddrii 11460 recni 11136 7re 12228 6re 12225 ax-1cn 11074 df-7 12203 ax-mp 5 oveq1i 7365 3cn 12216 2cn 12210 df-3 12199 mullidi 11127 subdiri 11577 mp3an 1463 mulcli 11129 subadd23 11382 oveq2i 7366 oveq12i 7367 3t2e6 12296 mulcomi 11130 subcli 11447 biimpri 228 subadd2i 11459. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 3 & ⊢ ((3 · 𝐴) + (2 · 𝐵)) = 7 ⇒ ⊢ (𝐴 = 1 ∧ 𝐵 = 2) | ||
| Theorem | problem5 35724 | Practice problem 5. Clues: 3brtr3i 5124 mpbi 230 breqtri 5120 ltaddsubi 11688 remulcli 11138 2re 12209 3re 12215 9re 12234 eqcomi 2742 mvlladdi 11389 3cn 6cn 12226 eqtr3i 2758 6p3e9 12290 addcomi 11314 ltdiv1ii 12061 6re 12225 nngt0i 12174 2nn 12208 divcan3i 11877 recni 11136 2cn 12210 2ne0 12239 mpbir 231 eqtri 2756 mulcomi 11130 3t2e6 12296 divmuli 11885. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ ((2 · 𝐴) + 3) < 9 ⇒ ⊢ 𝐴 < 3 | ||
| Theorem | quad3 35725 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) |
| ⊢ 𝑋 ∈ ℂ & ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ⇒ ⊢ (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴))) | ||
| Theorem | climuzcnv 35726* | Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
| ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) | ||
| Theorem | sinccvglem 35727* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ∖ {0})) & ⊢ (𝜑 → 𝐹 ⇝ 0) & ⊢ 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) < 1) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ⇝ 1) | ||
| Theorem | sinccvg 35728* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
| ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) | ||
| Theorem | circum 35729* | The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
| ⊢ 𝐴 = ((2 · π) / 𝑛) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ 𝑃 ⇝ ((2 · π) · 𝑅) | ||
| Theorem | elfzm12 35730 | Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) | ||
| Theorem | nn0seqcvg 35731* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Inference version. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ 𝐹:ℕ0⟶ℕ0 & ⊢ 𝑁 = (𝐹‘0) & ⊢ (𝑘 ∈ ℕ0 → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝐹‘𝑁) = 0 | ||
| Theorem | lediv2aALT 35732 | Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) | ||
| Theorem | abs2sqlei 35733 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)) | ||
| Theorem | abs2sqlti 35734 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) | ||
| Theorem | abs2sqle 35735 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) | ||
| Theorem | abs2sqlt 35736 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) | ||
| Theorem | abs2difi 35737 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) | ||
| Theorem | abs2difabsi 35738 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) | ||
| Theorem | 2thALT 35739 | Alternate proof of 2th 264. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | orbi2iALT 35740 | Alternate proof of orbi2i 912. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) | ||
| Theorem | pm3.48ALT 35741 | Alternate proof of pm3.48 965. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | ||
| Theorem | 3jcadALT 35742 | Alternate proof of 3jcad 1129. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
| Theorem | currybi 35743 | Biconditional version of Curry's paradox. If some proposition 𝜑 amounts to the self-referential statement "This very statement is equivalent to 𝜓", then 𝜓 is true. See bj-currypara 36615 in BJ's mathbox for the classical version. (Contributed by Adrian Ducourtial, 18-Mar-2025.) |
| ⊢ ((𝜑 ↔ (𝜑 ↔ 𝜓)) → 𝜓) | ||
| Theorem | antnest 35744 | Suppose 𝜑, 𝜓 are distinct atomic propositional formulas, and let Γ be the smallest class of formulas for which ⊤ ∈ Γ and (𝜒 → 𝜑), (𝜒 → 𝜓) ∈ Γ for 𝜒 ∈ Γ. The present theorem is then an element of Γ, and the implications occurring in the theorem are in one-to-one correspondence with the formulas in Γ up to logical equivalence. In particular, the theorem itself is equivalent to ⊤ ∈ Γ. (Contributed by Adrian Ducourtial, 2-Oct-2025.) |
| ⊢ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓) | ||
| Theorem | antnestlaw3lem 35745 | Lemma for antnestlaw3 35748. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜓)) | ||
| Theorem | antnestlaw1 35746 | A law of nested antecedents. The converse direction is a subschema of pm2.27 42. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜓) ↔ (𝜑 → 𝜓)) | ||
| Theorem | antnestlaw2 35747 | A law of nested antecedents. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜒) ↔ (((𝜑 → 𝜒) → 𝜓) → 𝜒)) | ||
| Theorem | antnestlaw3 35748 | A law of nested antecedents. Compare with looinv 203. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ ((((𝜑 → 𝜓) → 𝜒) → 𝜒) ↔ (((𝜑 → 𝜒) → 𝜓) → 𝜓)) | ||
| Theorem | antnestALT 35749 | Alternative proof of antnest 35744 from the valid schema ((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓) using laws of nested antecedents. Our proof uses only the laws antnestlaw1 35746 and antnestlaw3 35748. (Contributed by Adrian Ducourtial, 5-Dec-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓) | ||
| Syntax | ccloneop 35750 | Syntax for the function of the class of operations on a set. |
| class CloneOp | ||
| Definition | df-cloneop 35751* | Define the function that sends a set to the class of clone-theoretic operations on the set. For convenience, we take an operation on 𝑎 to be a function on finite sequences of elements of 𝑎 (rather than tuples) with values in 𝑎. Following line 6 of [Szendrei] p. 11, the arity 𝑛 of an operation (here, the length of the sequences at which the operation is defined) is always finite and non-zero, whence 𝑛 is taken to be a non-zero finite ordinal. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
| ⊢ CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛))}) | ||
| Syntax | cprj 35752 | Syntax for the function of projections on sets. |
| class prj | ||
| Definition | df-prj 35753* | Define the function that, for a set 𝑎, arity 𝑛, and index 𝑖, returns the 𝑖-th 𝑛-ary projection on 𝑎. This is the 𝑛-ary operation on 𝑎 that, for any sequence of 𝑛 elements of 𝑎, returns the element having index 𝑖. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
| ⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) | ||
| Syntax | csuppos 35754 | Syntax for the function of superpositions. |
| class suppos | ||
| Definition | df-suppos 35755* | Define the function that, when given an 𝑛-ary operation 𝑓 and 𝑛 many 𝑚-ary operations (𝑔‘∅), ..., (𝑔‘∪ 𝑛), returns the superposition of 𝑓 with the (𝑔‘𝑖), itself another 𝑚-ary operation on 𝑎. Given 𝑥 (a sequence of 𝑚 arguments in 𝑎), the superposition effectively applies each of the (𝑔‘𝑖) to 𝑥, then applies 𝑓 to the resulting sequence of 𝑛 function values. This can be seen as a generalized version of function composition; see paragraph 3 of [Szendrei] p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
| ⊢ suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) | ||
| Theorem | axextprim 35756 | ax-ext 2705 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) | ||
| Theorem | axrepprim 35757 | ax-rep 5221 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧 ∈ 𝑥 → ¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧 ∈ 𝑥))) | ||
| Theorem | axunprim 35758 | ax-un 7677 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpowprim 35759 | ax-pow 5307 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) | ||
| Theorem | axregprim 35760 | ax-reg 9488 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
| Theorem | axinfprim 35761 | ax-inf 9538 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ (𝑦 ∈ 𝑥 → ¬ ∀𝑦(𝑦 ∈ 𝑥 → ¬ ∀𝑧(𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥)))) | ||
| Theorem | axacprim 35762 | ax-ac 10360 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) | ||
| Theorem | untelirr 35763* | We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 35845). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | untuni 35764* | The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) | ||
| Theorem | untsucf 35765* | If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
| Theorem | unt0 35766 | The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 | ||
| Theorem | untint 35767* | If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
| Theorem | efrunt 35768* | If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
| ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) | ||
| Theorem | untangtr 35769* | A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.) |
| ⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) | ||
| Theorem | 3jaodd 35770 | Double deduction form of 3jaoi 1430. (Contributed by Scott Fenton, 20-Apr-2011.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃 ∨ 𝜏) → 𝜂))) | ||
| Theorem | 3orit 35771 | Closed form of 3ori 1426. (Contributed by Scott Fenton, 20-Apr-2011.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) | ||
| Theorem | biimpexp 35772 | A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.) |
| ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) | ||
| Theorem | nepss 35773 | Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011.) |
| ⊢ (𝐴 ≠ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ∨ (𝐴 ∩ 𝐵) ⊊ 𝐵)) | ||
| Theorem | 3ccased 35774 | Triple disjunction form of ccased 1038. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝜑 → ((𝜒 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜎) → 𝜓)) ⇒ ⊢ (𝜑 → (((𝜒 ∨ 𝜃 ∨ 𝜏) ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → 𝜓)) | ||
| Theorem | dfso3 35775* | Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.) |
| ⊢ (𝑅 Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
| Theorem | brtpid1 35776 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
| ⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 | ||
| Theorem | brtpid2 35777 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
| ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 | ||
| Theorem | brtpid3 35778 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
| ⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 | ||
| Theorem | iota5f 35779* | A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
| Theorem | jath 35780 | Closed form of ja 186. Proved using the completeness script. (Proof modification is discouraged.) (Contributed by Scott Fenton, 13-Dec-2021.) |
| ⊢ ((¬ 𝜑 → 𝜒) → ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → 𝜒))) | ||
| Theorem | xpab 35781* | Cartesian product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ ({𝑥 ∣ 𝜑} × {𝑦 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | nnuni 35782 | The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
| Theorem | sqdivzi 35783 | Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
| Theorem | supfz 35784 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
| Theorem | inffz 35785 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
| Theorem | fz0n 35786 | The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | shftvalg 35787 | Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
| Theorem | divcnvlin 35788* | Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
| Theorem | climlec3 35789* | Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | iexpire 35790 | i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020.) |
| ⊢ (i↑𝑐i) ∈ ℝ | ||
| Theorem | bcneg1 35791 | The binomial coefficient over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) | ||
| Theorem | bcm1nt 35792 | The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁 − 𝐾)))) | ||
| Theorem | bcprod 35793* | A product identity for binomial coefficients. (Contributed by Scott Fenton, 23-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))) | ||
| Theorem | bccolsum 35794* | A column-sum rule for binomial coefficients. (Contributed by Scott Fenton, 24-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))) | ||
| Theorem | iprodefisumlem 35795 | Lemma for iprodefisum 35796. (Contributed by Scott Fenton, 11-Feb-2018.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹))) | ||
| Theorem | iprodefisum 35796* | Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (exp‘𝐵) = (exp‘Σ𝑘 ∈ 𝑍 𝐵)) | ||
| Theorem | iprodgam 35797* | An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴)) | ||
| Theorem | faclimlem1 35798* | Lemma for faclim 35801. Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))) | ||
| Theorem | faclimlem2 35799* | Lemma for faclim 35801. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1)) | ||
| Theorem | faclimlem3 35800 | Lemma for faclim 35801. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |