| Metamath
Proof Explorer Theorem List (p. 358 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | supfz 35701 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
| Theorem | inffz 35702 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
| Theorem | fz0n 35703 | The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | shftvalg 35704 | Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
| Theorem | divcnvlin 35705* | Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
| Theorem | climlec3 35706* | Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | iexpire 35707 | i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020.) |
| ⊢ (i↑𝑐i) ∈ ℝ | ||
| Theorem | bcneg1 35708 | The binomial coefficient over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) | ||
| Theorem | bcm1nt 35709 | The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁 − 𝐾)))) | ||
| Theorem | bcprod 35710* | A product identity for binomial coefficients. (Contributed by Scott Fenton, 23-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))) | ||
| Theorem | bccolsum 35711* | A column-sum rule for binomial coefficients. (Contributed by Scott Fenton, 24-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))) | ||
| Theorem | iprodefisumlem 35712 | Lemma for iprodefisum 35713. (Contributed by Scott Fenton, 11-Feb-2018.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹))) | ||
| Theorem | iprodefisum 35713* | Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (exp‘𝐵) = (exp‘Σ𝑘 ∈ 𝑍 𝐵)) | ||
| Theorem | iprodgam 35714* | An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴)) | ||
| Theorem | faclimlem1 35715* | Lemma for faclim 35718. Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))) | ||
| Theorem | faclimlem2 35716* | Lemma for faclim 35718. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1)) | ||
| Theorem | faclimlem3 35717 | Lemma for faclim 35718. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵))))) | ||
| Theorem | faclim 35718* | An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) ⇒ ⊢ (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴)) | ||
| Theorem | iprodfac 35719* | An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) | ||
| Theorem | faclim2 35720* | Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇒ ⊢ (𝑀 ∈ ℕ0 → 𝐹 ⇝ 1) | ||
| Theorem | gcd32 35721 | Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐴 gcd 𝐶) gcd 𝐵)) | ||
| Theorem | gcdabsorb 35722 | Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐵) = (𝐴 gcd 𝐵)) | ||
| Theorem | dftr6 35723 | A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) | ||
| Theorem | coep 35724* | Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) | ||
| Theorem | coepr 35725* | Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) | ||
| Theorem | dffr5 35726 | A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.) |
| ⊢ (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ ◡𝑅))) | ||
| Theorem | dfso2 35727 | Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.) |
| ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ ◡𝑅)))) | ||
| Theorem | br8 35728* | Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
| ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑔 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (ℎ = 𝐻 → (𝜎 ↔ 𝜌)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 ∃𝑔 ∈ 𝑃 ∃ℎ ∈ 𝑃 (𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑒, 𝑓〉, 〈𝑔, ℎ〉〉 ∧ 𝜑)} ⇒ ⊢ (((𝑋 ∈ 𝑆 ∧ 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄) ∧ (𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ∧ 𝐻 ∈ 𝑄)) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑅〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 𝜌)) | ||
| Theorem | br6 35729* | Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
| ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 (𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄 ∧ 𝐶 ∈ 𝑄) ∧ (𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄 ∧ 𝐹 ∈ 𝑄)) → (〈𝐴, 〈𝐵, 𝐶〉〉𝑅〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 𝜁)) | ||
| Theorem | br4 35730* | Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013.) (Revised by Mario Carneiro, 14-Oct-2013.) |
| ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 (𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄)) → (〈𝐴, 𝐵〉𝑅〈𝐶, 𝐷〉 ↔ 𝜏)) | ||
| Theorem | cnvco1 35731 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) | ||
| Theorem | cnvco2 35732 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) | ||
| Theorem | eldm3 35733 | Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.) |
| ⊢ (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅) | ||
| Theorem | elrn3 35734 | Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
| ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) | ||
| Theorem | pocnv 35735 | The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) | ||
| Theorem | socnv 35736 | The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) | ||
| Theorem | elintfv 35737* | Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ 𝑋 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) | ||
| Theorem | funpsstri 35738 | A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.) |
| ⊢ ((Fun 𝐻 ∧ (𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹)) | ||
| Theorem | fundmpss 35739 | If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.) |
| ⊢ (Fun 𝐺 → (𝐹 ⊊ 𝐺 → dom 𝐹 ⊊ dom 𝐺)) | ||
| Theorem | funsseq 35740 | Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) | ||
| Theorem | fununiq 35741 | The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) | ||
| Theorem | funbreq 35742 | An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) | ||
| Theorem | br1steq 35743 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) | ||
| Theorem | br2ndeq 35744 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) | ||
| Theorem | dfdm5 35745 | Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | ||
| Theorem | dfrn5 35746 | Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | ||
| Theorem | opelco3 35747 | Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) | ||
| Theorem | elima4 35748 | Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.) |
| ⊢ (𝐴 ∈ (𝑅 “ 𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅) | ||
| Theorem | fv1stcnv 35749 | The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
| ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉) → (◡(1st ↾ (𝐴 × {𝑌}))‘𝑋) = 〈𝑋, 𝑌〉) | ||
| Theorem | fv2ndcnv 35750 | The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (◡(2nd ↾ ({𝑋} × 𝐴))‘𝑌) = 〈𝑋, 𝑌〉) | ||
| Theorem | setinds 35751* | Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
| ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | setinds2f 35752* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | setinds2 35753* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | elpotr 35754* | A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.) |
| ⊢ (∀𝑧 ∈ 𝐴 Tr 𝑧 → E Po 𝐴) | ||
| Theorem | dford5reg 35755 | Given ax-reg 9503, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) | ||
| Theorem | dfon2lem1 35756 | Lemma for dfon2 35765. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} | ||
| Theorem | dfon2lem2 35757* | Lemma for dfon2 35765. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 | ||
| Theorem | dfon2lem3 35758* | Lemma for dfon2 35765. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) | ||
| Theorem | dfon2lem4 35759* | Lemma for dfon2 35765. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
| Theorem | dfon2lem5 35760* | Lemma for dfon2 35765. Two sets satisfying the new definition also satisfy trichotomy with respect to ∈. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | dfon2lem6 35761* | Lemma for dfon2 35765. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ ((Tr 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑧((𝑧 ⊊ 𝑥 ∧ Tr 𝑧) → 𝑧 ∈ 𝑥)) → ∀𝑦((𝑦 ⊊ 𝑆 ∧ Tr 𝑦) → 𝑦 ∈ 𝑆)) | ||
| Theorem | dfon2lem7 35762* | Lemma for dfon2 35765. All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | ||
| Theorem | dfon2lem8 35763* | Lemma for dfon2 35765. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) → (∀𝑧((𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧) → 𝑧 ∈ ∩ 𝐴) ∧ ∩ 𝐴 ∈ 𝐴)) | ||
| Theorem | dfon2lem9 35764* | Lemma for dfon2 35765. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → E Fr 𝐴) | ||
| Theorem | dfon2 35765* | On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.) |
| ⊢ On = {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} | ||
| Theorem | rdgprc0 35766 | The value of the recursive definition generator at ∅ when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅) | ||
| Theorem | rdgprc 35767 | The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (¬ 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) | ||
| Theorem | dfrdg2 35768* | Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝐼 ∈ 𝑉 → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) | ||
| Theorem | dfrdg3 35769* | Generalization of dfrdg2 35768 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} | ||
| Theorem | axextdfeq 35770 | A version of ax-ext 2701 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
| ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) | ||
| Theorem | ax8dfeq 35771 | A version of ax-8 2111 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
| ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) | ||
| Theorem | axextdist 35772 | ax-ext 2701 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | axextbdist 35773 | axextb 2704 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | ||
| Theorem | 19.12b 35774* | Version of 19.12vv 2345 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | ||
| Theorem | exnel 35775 | There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 | ||
| Theorem | distel 35776 | Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5384 and elirrv 9508.) (Contributed by Scott Fenton, 15-Dec-2010.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | ||
| Theorem | axextndbi 35777 | axextnd 10504 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.) |
| ⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
| Theorem | hbntg 35778 | A more general form of hbnt 2294. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | ||
| Theorem | hbimtg 35779 | A more general and closed form of hbim 2299. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) | ||
| Theorem | hbaltg 35780 | A more general and closed form of hbal 2168. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) | ||
| Theorem | hbng 35781 | A more general form of hbn 2295. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜑) | ||
| Theorem | hbimg 35782 | A more general form of hbim 2299. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜃) ⇒ ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) | ||
| Syntax | cwsuc 35783 | Declare the syntax for well-founded successor. |
| class wsuc(𝑅, 𝐴, 𝑋) | ||
| Syntax | cwlim 35784 | Declare the syntax for well-founded limit class. |
| class WLim(𝑅, 𝐴) | ||
| Definition | df-wsuc 35785 | Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | ||
| Definition | df-wlim 35786* | Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | ||
| Theorem | wsuceq123 35787 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) | ||
| Theorem | wsuceq1 35788 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) | ||
| Theorem | wsuceq2 35789 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋)) | ||
| Theorem | wsuceq3 35790 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) | ||
| Theorem | nfwsuc 35791 | Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥wsuc(𝑅, 𝐴, 𝑋) | ||
| Theorem | wlimeq12 35792 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) | ||
| Theorem | wlimeq1 35793 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐴)) | ||
| Theorem | wlimeq2 35794 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
| ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | ||
| Theorem | nfwlim 35795 | Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) | ||
| Theorem | elwlim 35796 | Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) | ||
| Theorem | wzel 35797 | The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | wsuclem 35798* | Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦))) | ||
| Theorem | wsucex 35799 | Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) | ||
| Theorem | wsuccl 35800* | If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) ⇒ ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |