![]() |
Metamath
Proof Explorer Theorem List (p. 358 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | brtpid2 35701 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 | ||
Theorem | brtpid3 35702 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 | ||
Theorem | iota5f 35703* | A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | jath 35704 | Closed form of ja 186. Proved using the completeness script. (Proof modification is discouraged.) (Contributed by Scott Fenton, 13-Dec-2021.) |
⊢ ((¬ 𝜑 → 𝜒) → ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → 𝜒))) | ||
Theorem | xpab 35705* | Cartesian product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} × {𝑦 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | nnuni 35706 | The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
Theorem | sqdivzi 35707 | Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | supfz 35708 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
Theorem | inffz 35709 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
Theorem | fz0n 35710 | The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) | ||
Theorem | shftvalg 35711 | Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
Theorem | divcnvlin 35712* | Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | climlec3 35713* | Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | iexpire 35714 | i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020.) |
⊢ (i↑𝑐i) ∈ ℝ | ||
Theorem | bcneg1 35715 | The binomial coefficient over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) | ||
Theorem | bcm1nt 35716 | The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁 − 𝐾)))) | ||
Theorem | bcprod 35717* | A product identity for binomial coefficients. (Contributed by Scott Fenton, 23-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))) | ||
Theorem | bccolsum 35718* | A column-sum rule for binomial coefficients. (Contributed by Scott Fenton, 24-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))) | ||
Theorem | iprodefisumlem 35719 | Lemma for iprodefisum 35720. (Contributed by Scott Fenton, 11-Feb-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹))) | ||
Theorem | iprodefisum 35720* | Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (exp‘𝐵) = (exp‘Σ𝑘 ∈ 𝑍 𝐵)) | ||
Theorem | iprodgam 35721* | An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴)) | ||
Theorem | faclimlem1 35722* | Lemma for faclim 35725. Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))) | ||
Theorem | faclimlem2 35723* | Lemma for faclim 35725. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1)) | ||
Theorem | faclimlem3 35724 | Lemma for faclim 35725. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵))))) | ||
Theorem | faclim 35725* | An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) ⇒ ⊢ (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴)) | ||
Theorem | iprodfac 35726* | An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) | ||
Theorem | faclim2 35727* | Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇒ ⊢ (𝑀 ∈ ℕ0 → 𝐹 ⇝ 1) | ||
Theorem | gcd32 35728 | Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐴 gcd 𝐶) gcd 𝐵)) | ||
Theorem | gcdabsorb 35729 | Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐵) = (𝐴 gcd 𝐵)) | ||
Theorem | dftr6 35730 | A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) | ||
Theorem | coep 35731* | Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) | ||
Theorem | coepr 35732* | Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) | ||
Theorem | dffr5 35733 | A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.) |
⊢ (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ ◡𝑅))) | ||
Theorem | dfso2 35734 | Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.) |
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ ◡𝑅)))) | ||
Theorem | br8 35735* | Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑔 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (ℎ = 𝐻 → (𝜎 ↔ 𝜌)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 ∃𝑔 ∈ 𝑃 ∃ℎ ∈ 𝑃 (𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑒, 𝑓〉, 〈𝑔, ℎ〉〉 ∧ 𝜑)} ⇒ ⊢ (((𝑋 ∈ 𝑆 ∧ 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄) ∧ (𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ∧ 𝐻 ∈ 𝑄)) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑅〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 𝜌)) | ||
Theorem | br6 35736* | Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 (𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄 ∧ 𝐶 ∈ 𝑄) ∧ (𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄 ∧ 𝐹 ∈ 𝑄)) → (〈𝐴, 〈𝐵, 𝐶〉〉𝑅〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 𝜁)) | ||
Theorem | br4 35737* | Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013.) (Revised by Mario Carneiro, 14-Oct-2013.) |
⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 (𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄)) → (〈𝐴, 𝐵〉𝑅〈𝐶, 𝐷〉 ↔ 𝜏)) | ||
Theorem | cnvco1 35738 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) | ||
Theorem | cnvco2 35739 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) | ||
Theorem | eldm3 35740 | Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.) |
⊢ (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅) | ||
Theorem | elrn3 35741 | Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) | ||
Theorem | pocnv 35742 | The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) | ||
Theorem | socnv 35743 | The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) | ||
Theorem | sotrd 35744 | Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑅𝑌) & ⊢ (𝜑 → 𝑌𝑅𝑍) ⇒ ⊢ (𝜑 → 𝑋𝑅𝑍) | ||
Theorem | elintfv 35745* | Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ 𝑋 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) | ||
Theorem | funpsstri 35746 | A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.) |
⊢ ((Fun 𝐻 ∧ (𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹)) | ||
Theorem | fundmpss 35747 | If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ (Fun 𝐺 → (𝐹 ⊊ 𝐺 → dom 𝐹 ⊊ dom 𝐺)) | ||
Theorem | funsseq 35748 | Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) | ||
Theorem | fununiq 35749 | The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) | ||
Theorem | funbreq 35750 | An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | br1steq 35751 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) | ||
Theorem | br2ndeq 35752 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) | ||
Theorem | dfdm5 35753 | Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | ||
Theorem | dfrn5 35754 | Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | ||
Theorem | opelco3 35755 | Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) | ||
Theorem | elima4 35756 | Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.) |
⊢ (𝐴 ∈ (𝑅 “ 𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅) | ||
Theorem | fv1stcnv 35757 | The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉) → (◡(1st ↾ (𝐴 × {𝑌}))‘𝑋) = 〈𝑋, 𝑌〉) | ||
Theorem | fv2ndcnv 35758 | The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (◡(2nd ↾ ({𝑋} × 𝐴))‘𝑌) = 〈𝑋, 𝑌〉) | ||
Theorem | setinds 35759* | Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | setinds2f 35760* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | setinds2 35761* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | elpotr 35762* | A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.) |
⊢ (∀𝑧 ∈ 𝐴 Tr 𝑧 → E Po 𝐴) | ||
Theorem | dford5reg 35763 | Given ax-reg 9629, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) | ||
Theorem | dfon2lem1 35764 | Lemma for dfon2 35773. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} | ||
Theorem | dfon2lem2 35765* | Lemma for dfon2 35773. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 | ||
Theorem | dfon2lem3 35766* | Lemma for dfon2 35773. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) | ||
Theorem | dfon2lem4 35767* | Lemma for dfon2 35773. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | dfon2lem5 35768* | Lemma for dfon2 35773. Two sets satisfying the new definition also satisfy trichotomy with respect to ∈. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | dfon2lem6 35769* | Lemma for dfon2 35773. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ ((Tr 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑧((𝑧 ⊊ 𝑥 ∧ Tr 𝑧) → 𝑧 ∈ 𝑥)) → ∀𝑦((𝑦 ⊊ 𝑆 ∧ Tr 𝑦) → 𝑦 ∈ 𝑆)) | ||
Theorem | dfon2lem7 35770* | Lemma for dfon2 35773. All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | ||
Theorem | dfon2lem8 35771* | Lemma for dfon2 35773. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) → (∀𝑧((𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧) → 𝑧 ∈ ∩ 𝐴) ∧ ∩ 𝐴 ∈ 𝐴)) | ||
Theorem | dfon2lem9 35772* | Lemma for dfon2 35773. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → E Fr 𝐴) | ||
Theorem | dfon2 35773* | On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.) |
⊢ On = {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} | ||
Theorem | rdgprc0 35774 | The value of the recursive definition generator at ∅ when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅) | ||
Theorem | rdgprc 35775 | The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (¬ 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) | ||
Theorem | dfrdg2 35776* | Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐼 ∈ 𝑉 → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) | ||
Theorem | dfrdg3 35777* | Generalization of dfrdg2 35776 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} | ||
Theorem | axextdfeq 35778 | A version of ax-ext 2705 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) | ||
Theorem | ax8dfeq 35779 | A version of ax-8 2107 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) | ||
Theorem | axextdist 35780 | ax-ext 2705 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||
Theorem | axextbdist 35781 | axextb 2708 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | ||
Theorem | 19.12b 35782* | Version of 19.12vv 2347 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | ||
Theorem | exnel 35783 | There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 | ||
Theorem | distel 35784 | Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5447 and elirrv 9633.) (Contributed by Scott Fenton, 15-Dec-2010.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | ||
Theorem | axextndbi 35785 | axextnd 10628 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.) |
⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | hbntg 35786 | A more general form of hbnt 2292. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbimtg 35787 | A more general and closed form of hbim 2297. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) | ||
Theorem | hbaltg 35788 | A more general and closed form of hbal 2164. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) | ||
Theorem | hbng 35789 | A more general form of hbn 2293. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbimg 35790 | A more general form of hbim 2297. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜃) ⇒ ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) | ||
Syntax | cwsuc 35791 | Declare the syntax for well-founded successor. |
class wsuc(𝑅, 𝐴, 𝑋) | ||
Syntax | cwlim 35792 | Declare the syntax for well-founded limit class. |
class WLim(𝑅, 𝐴) | ||
Definition | df-wsuc 35793 | Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | ||
Definition | df-wlim 35794* | Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | ||
Theorem | wsuceq123 35795 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) | ||
Theorem | wsuceq1 35796 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) | ||
Theorem | wsuceq2 35797 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋)) | ||
Theorem | wsuceq3 35798 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) | ||
Theorem | nfwsuc 35799 | Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥wsuc(𝑅, 𝐴, 𝑋) | ||
Theorem | wlimeq12 35800 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |