HomeHome Metamath Proof Explorer
Theorem List (p. 358 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 35701-35800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmatunitlindflem2 35701 One direction of matunitlindf 35702. (Contributed by Brendan Leahy, 2-Jun-2021.)
((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
 
Theoremmatunitlindf 35702 A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))
 
Theoremptrest 35703* Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴⟶Top)    &   ((𝜑𝑘𝐴) → 𝑆𝑊)       (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
 
Theoremptrecube 35704* Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
 
Theorempoimirlem1 35705* Lemma for poimir 35737- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))    &   (𝜑𝑇:(1...𝑁)⟶ℤ)    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑀 ∈ (1...(𝑁 − 1)))       (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))
 
Theorempoimirlem2 35706* Lemma for poimir 35737- consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))    &   (𝜑𝑇:(1...𝑁)⟶ℤ)    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑉 ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 ∈ ((0...𝑁) ∖ {𝑉}))       (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹𝑉)‘𝑛))
 
Theorempoimirlem3 35707* Lemma for poimir 35737 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑀 < 𝑁)    &   (𝜑𝑇:(1...𝑀)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑀)–1-1-onto→(1...𝑀))       (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → (⟨(𝑇 ∪ {⟨(𝑀 + 1), 0⟩}), (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})⟩ ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘f + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)))))
 
Theorempoimirlem4 35708* Lemma for poimir 35737 connecting the admissible faces on the back face of the (𝑀 + 1)-cube to admissible simplices in the 𝑀-cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑀 < 𝑁)       (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((1st𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd𝑠)‘(𝑀 + 1)) = (𝑀 + 1))})
 
Theorempoimirlem5 35709* Lemma for poimir 35737 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → 0 < (2nd𝑇))       (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
 
Theorempoimirlem6 35710* Lemma for poimir 35737 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 ∈ (1...((2nd𝑇) − 1)))       (𝜑 → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑀))
 
Theorempoimirlem7 35711* Lemma for poimir 35737, similar to poimirlem6 35710, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))       (𝜑 → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 2))‘𝑛) ≠ ((𝐹‘(𝑀 − 1))‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑀))
 
Theorempoimirlem8 35712* Lemma for poimir 35737, establishing that away from the opposite vertex the walks in poimirlem9 35713 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑈𝑆)       (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
 
Theorempoimirlem9 35713* Lemma for poimir 35737, establishing the two walks that yield a given face when the opposite vertex is neither first nor last. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑈𝑆)    &   (𝜑 → (2nd ‘(1st𝑈)) ≠ (2nd ‘(1st𝑇)))       (𝜑 → (2nd ‘(1st𝑈)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))
 
Theorempoimirlem10 35714* Lemma for poimir 35737 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑇)))
 
Theorempoimirlem11 35715* Lemma for poimir 35737 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) = 0)    &   (𝜑𝑈𝑆)    &   (𝜑 → (2nd𝑈) = 0)    &   (𝜑𝑀 ∈ (1...𝑁))       (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))
 
Theorempoimirlem12 35716* Lemma for poimir 35737 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) = 𝑁)    &   (𝜑𝑈𝑆)    &   (𝜑 → (2nd𝑈) = 𝑁)    &   (𝜑𝑀 ∈ (0...(𝑁 − 1)))       (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))
 
Theorempoimirlem13 35717* Lemma for poimir 35737- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))       (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
 
Theorempoimirlem14 35718* Lemma for poimir 35737- for at most one simplex associated with a shared face is the opposite vertex last on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))       (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 𝑁)
 
Theorempoimirlem15 35719* Lemma for poimir 35737, that the face in poimirlem22 35726 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))       (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)
 
Theorempoimirlem16 35720* Lemma for poimir 35737 establishing the vertices of the simplex of poimirlem17 35721. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
 
Theorempoimirlem17 35721* Lemma for poimir 35737 establishing existence for poimirlem18 35722. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑 → ∃𝑧𝑆 𝑧𝑇)
 
Theorempoimirlem18 35722* Lemma for poimir 35737 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
 
Theorempoimirlem19 35723* Lemma for poimir 35737 establishing the vertices of the simplex in poimirlem20 35724. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   (𝜑 → (2nd𝑇) = 𝑁)       (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
 
Theorempoimirlem20 35724* Lemma for poimir 35737 establishing existence for poimirlem21 35725. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   (𝜑 → (2nd𝑇) = 𝑁)       (𝜑 → ∃𝑧𝑆 𝑧𝑇)
 
Theorempoimirlem21 35725* Lemma for poimir 35737 stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   (𝜑 → (2nd𝑇) = 𝑁)       (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
 
Theorempoimirlem22 35726* Lemma for poimir 35737, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)       (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
 
Theorempoimirlem23 35727* Lemma for poimir 35737, two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑉 ∈ (0...𝑁))       (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
 
Theorempoimirlem24 35728* Lemma for poimir 35737, two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑉 ∈ (0...𝑁))       (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑m (1...𝑁)) ↑m (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))))
 
Theorempoimirlem25 35729* Lemma for poimir 35737 stating that for a given simplex such that no vertex maps to 𝑁, the number of admissible faces is even. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁𝑇, 𝑈⟩ / 𝑠𝐶)       (𝜑 → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶}))
 
Theorempoimirlem26 35730* Lemma for poimir 35737 showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))       (𝜑 → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd𝑡)})𝑖 = (1st𝑡) / 𝑠𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})))
 
Theorempoimirlem27 35731* Lemma for poimir 35737 showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 0)) → 𝐵 < 𝑛)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1))       (𝜑 → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd𝑡)})𝑖 = (1st𝑡) / 𝑠𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st𝑠)‘𝑁) = 0 ∧ ((2nd𝑠)‘𝑁) = 𝑁)})))
 
Theorempoimirlem28 35732* Lemma for poimir 35737, a variant of Sperner's lemma. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘f + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 0)) → 𝐵 < 𝑛)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1))    &   (𝜑𝐾 ∈ ℕ)       (𝜑 → ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)
 
Theorempoimirlem29 35733* Lemma for poimir 35737 connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑m (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   𝑋 = ((𝐹‘(((1st ‘(𝐺𝑘)) ∘f + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛)    &   (𝜑𝐺:ℕ⟶((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))    &   ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))    &   ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋)       (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝐶𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝐶𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))
 
Theorempoimirlem30 35734* Lemma for poimir 35737 combining poimirlem29 35733 with bwth 22469. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑m (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   𝑋 = ((𝐹‘(((1st ‘(𝐺𝑘)) ∘f + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛)    &   (𝜑𝐺:ℕ⟶((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))    &   ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))    &   ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋)       (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
 
Theorempoimirlem31 35735* Lemma for poimir 35737, assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 35734 and poimirlem28 35732. Equation (2) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑m (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)    &   𝑃 = ((1st ‘(𝐺𝑘)) ∘f + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))    &   (𝜑𝐺:ℕ⟶((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))    &   ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))    &   ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))       ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃f / ((1...𝑁) × {𝑘})))‘𝑛))
 
Theorempoimirlem32 35736* Lemma for poimir 35737, combining poimirlem28 35732, poimirlem30 35734, and poimirlem31 35735 to get Equation (1) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑m (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))       (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
 
Theorempoimir 35737* Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑m (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))       (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
 
Theorembroucube 35738* Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑m (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)))       (𝜑 → ∃𝑐𝐼 𝑐 = (𝐹𝑐))
 
Theoremheicant 35739 Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.)
(𝜑𝐶 ∈ (∞Met‘𝑋))    &   (𝜑𝐷 ∈ (∞Met‘𝑌))    &   (𝜑 → (MetOpen‘𝐶) ∈ Comp)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝑌 ≠ ∅)       (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))
 
Theoremopnmbllem0 35740* Lemma for ismblfin 35745; could also be used to shorten proof of opnmbllem 24670. (Contributed by Brendan Leahy, 13-Jul-2018.)
(𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
 
Theoremmblfinlem1 35741* Lemma for ismblfin 35745, ordering the sets of dyadic intervals that are antichains under subset and whose unions are contained entirely in 𝐴. (Contributed by Brendan Leahy, 13-Jul-2018.)
((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
 
Theoremmblfinlem2 35742* Lemma for ismblfin 35745, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
 
Theoremmblfinlem3 35743* The difference between two sets measurable by the criterion in ismblfin 35745 is itself measurable by the same. Corollary 0.3 of [Viaclovsky7] p. 3. (Contributed by Brendan Leahy, 25-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
(((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) → sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘(𝐴𝐵)))
 
Theoremmblfinlem4 35744* Backward direction of ismblfin 35745. (Contributed by Brendan Leahy, 28-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
(((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ))
 
Theoremismblfin 35745* Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.)
((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
 
Theoremovoliunnfl 35746* ovoliun 24574 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))       ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
 
Theoremex-ovoliunnfl 35747* Demonstration of ovoliunnfl 35746. (Contributed by Brendan Leahy, 21-Nov-2017.)
((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
 
Theoremvoliunnfl 35748* voliun 24623 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
𝑆 = seq1( + , 𝐺)    &   𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))    &   ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))       ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
 
Theoremvolsupnfl 35749* volsup 24625 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018.)
((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ))       ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
 
Theoremmbfresfi 35750* Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝑆 ∈ Fin)    &   (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)    &   (𝜑 𝑆 = 𝐴)       (𝜑𝐹 ∈ MblFn)
 
Theoremmbfposadd 35751* If the sum of two measurable functions is measurable, the sum of their nonnegative parts is measurable. (Contributed by Brendan Leahy, 2-Apr-2018.)
(𝜑 → (𝑥𝐴𝐵) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ MblFn)
 
Theoremcnambfre 35752 A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.)
((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)
 
Theoremdvtanlem 35753 Lemma for dvtan 35754- the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018.) (Proof shortened by OpenAI, 3-Jul-2020.)
(cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld)
 
Theoremdvtan 35754 Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
(ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
 
Theoremitg2addnclem 35755* An alternate expression for the 2 integral that includes an arbitrarily small but strictly positive "buffer zone" wherever the simple function is nonzero. (Contributed by Brendan Leahy, 10-Oct-2017.) (Revised by Brendan Leahy, 10-Mar-2018.)
𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑦))) ∘r𝐹𝑥 = (∫1𝑔))}       (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))
 
Theoremitg2addnclem2 35756* Lemma for itg2addnc 35758. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.)
(𝜑𝐹 ∈ MblFn)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))       (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
 
Theoremitg2addnclem3 35757* Lemma incomprehensible in isolation split off to shorten proof of itg2addnc 35758. (Contributed by Brendan Leahy, 11-Mar-2018.)
(𝜑𝐹 ∈ MblFn)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐹) ∈ ℝ)    &   (𝜑𝐺:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐺) ∈ ℝ)       (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘r ≤ (𝐹f + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘r𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘r𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
 
Theoremitg2addnc 35758 Alternate proof of itg2add 24829 using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub 24778, which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc 10122, and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017.) (Revised by Brendan Leahy, 13-Mar-2018.)
(𝜑𝐹 ∈ MblFn)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐹) ∈ ℝ)    &   (𝜑𝐺:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐺) ∈ ℝ)       (𝜑 → (∫2‘(𝐹f + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))
 
Theoremitg2gt0cn 35759* itg2gt0 24830 holds on functions continuous on an open interval in the absence of ax-cc 10122. The fourth hypothesis is made unnecessary by the continuity hypothesis. (Contributed by Brendan Leahy, 16-Nov-2017.)
(𝜑𝑋 < 𝑌)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 < (𝐹𝑥))    &   (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))       (𝜑 → 0 < (∫2𝐹))
 
Theoremibladdnclem 35760* Lemma for ibladdnc 35761; cf ibladdlem 24889, whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc 35758. (Contributed by Brendan Leahy, 31-Oct-2017.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))    &   (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)    &   (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)    &   (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)       (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
 
Theoremibladdnc 35761* Choice-free analogue of itgadd 24894. A measurability hypothesis is necessitated by the loss of mbfadd 24730; for large classes of functions, such as continuous functions, it should be relatively easy to show. (Contributed by Brendan Leahy, 1-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
 
Theoremitgaddnclem1 35762* Lemma for itgaddnc 35764; cf. itgaddlem1 24892. (Contributed by Brendan Leahy, 7-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐶)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 
Theoremitgaddnclem2 35763* Lemma for itgaddnc 35764; cf. itgaddlem2 24893. (Contributed by Brendan Leahy, 10-Nov-2017.) (Revised by Brendan Leahy, 3-Apr-2018.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 
Theoremitgaddnc 35764* Choice-free analogue of itgadd 24894. (Contributed by Brendan Leahy, 11-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 
Theoremiblsubnc 35765* Choice-free analogue of iblsub 24891. (Contributed by Brendan Leahy, 11-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝐿1)
 
Theoremitgsubnc 35766* Choice-free analogue of itgsub 24895. (Contributed by Brendan Leahy, 11-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ MblFn)       (𝜑 → ∫𝐴(𝐵𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥))
 
Theoremiblabsnclem 35767* Lemma for iblabsnc 35768; cf. iblabslem 24897. (Contributed by Brendan Leahy, 7-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))    &   (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)       (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
 
Theoremiblabsnc 35768* Choice-free analogue of iblabs 24898. As with ibladdnc 35761, a measurability hypothesis is needed. (Contributed by Brendan Leahy, 7-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
 
Theoremiblmulc2nc 35769* Choice-free analogue of iblmulc2 24900. (Contributed by Brendan Leahy, 17-Nov-2017.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
 
Theoremitgmulc2nclem1 35770* Lemma for itgmulc2nc 35772; cf. itgmulc2lem1 24901. (Contributed by Brendan Leahy, 17-Nov-2017.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)    &   (𝜑𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)       (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 
Theoremitgmulc2nclem2 35771* Lemma for itgmulc2nc 35772; cf. itgmulc2lem2 24902. (Contributed by Brendan Leahy, 19-Nov-2017.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)    &   (𝜑𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 
Theoremitgmulc2nc 35772* Choice-free analogue of itgmulc2 24903. (Contributed by Brendan Leahy, 19-Nov-2017.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)       (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 
Theoremitgabsnc 35773* Choice-free analogue of itgabs 24904. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)    &   (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)       (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
 
Theoremitggt0cn 35774* itggt0 24913 holds for continuous functions in the absence of ax-cc 10122. (Contributed by Brendan Leahy, 16-Nov-2017.)
(𝜑𝑋 < 𝑌)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1)    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))       (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥)
 
Theoremftc1cnnclem 35775* Lemma for ftc1cnnc 35776; cf. ftc1lem4 25108. The stronger assumptions of ftc1cn 25112 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝑐 ∈ (𝐴(,)𝐵))    &   𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝑅 ∈ ℝ+)    &   ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))    &   (𝜑𝑋 ∈ (𝐴[,]𝐵))    &   (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)    &   (𝜑𝑌 ∈ (𝐴[,]𝐵))    &   (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)       ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
 
Theoremftc1cnnc 35776* Choice-free proof of ftc1cn 25112. (Contributed by Brendan Leahy, 20-Nov-2017.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑𝐹 ∈ 𝐿1)       (𝜑 → (ℝ D 𝐺) = 𝐹)
 
Theoremftc1anclem1 35777 Lemma for ftc1anc 35785- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 24727, but this proof avoids ax-cc 10122. (Contributed by Brendan Leahy, 18-Jun-2018.)
((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
 
Theoremftc1anclem2 35778* Lemma for ftc1anc 35785- restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018.) (Revised by Brendan Leahy, 8-Aug-2018.)
((𝐹:𝐴⟶ℂ ∧ 𝐹 ∈ 𝐿1𝐺 ∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝐴, (abs‘(𝐺‘(𝐹𝑡))), 0))) ∈ ℝ)
 
Theoremftc1anclem3 35779 Lemma for ftc1anc 35785- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.)
((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)
 
Theoremftc1anclem4 35780* Lemma for ftc1anc 35785. (Contributed by Brendan Leahy, 17-Jun-2018.)
((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
 
Theoremftc1anclem5 35781* Lemma for ftc1anc 35785, the existence of a simple function the integral of whose pointwise difference from the function is less than a given positive real. (Contributed by Brendan Leahy, 17-Jun-2018.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)       ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌)
 
Theoremftc1anclem6 35782* Lemma for ftc1anc 35785- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)       ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
 
Theoremftc1anclem7 35783* Lemma for ftc1anc 35785. (Contributed by Brendan Leahy, 13-May-2018.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)       (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2)))
 
Theoremftc1anclem8 35784* Lemma for ftc1anc 35785. (Contributed by Brendan Leahy, 29-May-2018.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)       (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) + (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < 𝑦)
 
Theoremftc1anc 35785* ftc1a 25106 holds for functions that obey the triangle inequality in the absence of ax-cc 10122. Theorem 565Ma of [Fremlin5] p. 220. (Contributed by Brendan Leahy, 11-May-2018.)
𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐹 ∈ 𝐿1)    &   (𝜑𝐹:𝐷⟶ℂ)    &   (𝜑 → ∀𝑠 ∈ ((,) “ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))(abs‘∫𝑠(𝐹𝑡) d𝑡) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡𝑠, (abs‘(𝐹𝑡)), 0))))       (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
 
Theoremftc2nc 35786* Choice-free proof of ftc2 25113. (Contributed by Brendan Leahy, 19-Jun-2018.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))    &   (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)    &   (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))       (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
 
Theoremasindmre 35787 Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))       (𝐷 ∩ ℝ) = (-1(,)1)
 
Theoremdvasin 35788* Derivative of arcsine. (Contributed by Brendan Leahy, 18-Dec-2018.)
𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))       (ℂ D (arcsin ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / (√‘(1 − (𝑥↑2)))))
 
Theoremdvacos 35789* Derivative of arccosine. (Contributed by Brendan Leahy, 18-Dec-2018.)
𝐷 = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))       (ℂ D (arccos ↾ 𝐷)) = (𝑥𝐷 ↦ (-1 / (√‘(1 − (𝑥↑2)))))
 
Theoremdvreasin 35790 Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
(ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))
 
Theoremdvreacos 35791 Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
(ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
 
Theoremareacirclem1 35792* Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
(𝑅 ∈ ℝ+ → (ℝ D (𝑡 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))))) = (𝑡 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
 
Theoremareacirclem2 35793* Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
 
Theoremareacirclem3 35794* Integrability of cross-section of circle. (Contributed by Brendan Leahy, 26-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1)
 
Theoremareacirclem4 35795* Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
(𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
 
Theoremareacirclem5 35796* Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}       ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
 
Theoremareacirc 35797* The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}       ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
 
20.20  Mathbox for Jeff Madsen
 
20.20.1  Logic and set theory
 
Theoremunirep 35798* Define a quantity whose definition involves a choice of representative, but which is uniquely determined regardless of the choice. (Contributed by Jeff Madsen, 1-Jun-2011.)
(𝑦 = 𝐷 → (𝜑𝜓))    &   (𝑦 = 𝐷𝐵 = 𝐶)    &   (𝑦 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑧𝐵 = 𝐹)    &   𝐵 ∈ V       ((∀𝑦𝐴𝑧𝐴 ((𝜑𝜒) → 𝐵 = 𝐹) ∧ (𝐷𝐴𝜓)) → (℩𝑥𝑦𝐴 (𝜑𝑥 = 𝐵)) = 𝐶)
 
Theoremcover2 35799* Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐵 ∈ V    &   𝐴 = 𝐵       (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑))
 
Theoremcover2g 35800* Two ways of expressing the statement "there is a cover of 𝐴 by elements of 𝐵 such that for each set in the cover, 𝜑". Note that 𝜑 and 𝑥 must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.)
𝐴 = 𝐵       (𝐵𝐶 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝜑) ↔ ∃𝑧 ∈ 𝒫 𝐵( 𝑧 = 𝐴 ∧ ∀𝑦𝑧 𝜑)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >