Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnclavci Structured version   Visualization version   GIF version

Theorem bj-nnclavci 34729
Description: Inference associated with bj-nnclavc 34728. Its associated inference is an instance of syl 17. Notice the non-intuitionistic proof from peirce 201 and syl 17. (Contributed by BJ, 30-Jul-2024.)
Hypothesis
Ref Expression
bj-nnclavci.1 (𝜑𝜓)
Assertion
Ref Expression
bj-nnclavci (((𝜑𝜓) → 𝜑) → 𝜓)

Proof of Theorem bj-nnclavci
StepHypRef Expression
1 bj-nnclavci.1 . 2 (𝜑𝜓)
2 bj-nnclavc 34728 . 2 ((𝜑𝜓) → (((𝜑𝜓) → 𝜑) → 𝜓))
31, 2ax-mp 5 1 (((𝜑𝜓) → 𝜑) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator