Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peirce | Structured version Visualization version GIF version |
Description: Peirce's axiom. A non-intuitionistic implication-only statement. Added to intuitionistic (implicational) propositional calculus, it gives classical (implicational) propositional calculus. For another non-intuitionistic positive statement, see curryax 891. When ⊥ is substituted for 𝜓, then this becomes the Clavius law pm2.18 128. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 9-Oct-2012.) |
Ref | Expression |
---|---|
peirce | ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplim 170 | . 2 ⊢ (¬ (𝜑 → 𝜓) → 𝜑) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | ja 189 | 1 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: looinv 206 impsingle 1629 tarski-bernays-ax2 1642 tbw-ax3 1704 tb-ax3 34145 bj-peircestab 34304 bj-peircecurry 34309 bj-peircei 34317 |
Copyright terms: Public domain | W3C validator |