Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com5r | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate right. (Contributed by Wolf Lammen, 29-Jul-2012.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com5r | ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com52l 102 | . 2 ⊢ (𝜒 → (𝜃 → (𝜏 → (𝜑 → (𝜓 → 𝜂))))) |
3 | 2 | com52l 102 | 1 ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |