MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com52l Structured version   Visualization version   GIF version

Theorem com52l 102
Description: Commutation of antecedents. Rotate left twice. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com52l (𝜒 → (𝜃 → (𝜏 → (𝜑 → (𝜓𝜂)))))

Proof of Theorem com52l
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com5l 100 1 (𝜒 → (𝜃 → (𝜏 → (𝜑 → (𝜓𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com52r  103  com5r  104  imp5p  34549
  Copyright terms: Public domain W3C validator