HomeHome Metamath Proof Explorer
Theorem List (p. 2 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 101-200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcom15 101 Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
 
Theoremcom52l 102 Commutation of antecedents. Rotate left twice. (Contributed by Jeff Hankins, 28-Jun-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜒 → (𝜃 → (𝜏 → (𝜑 → (𝜓𝜂)))))
 
Theoremcom52r 103 Commutation of antecedents. Rotate right twice. (Contributed by Jeff Hankins, 28-Jun-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜃 → (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂)))))
 
Theoremcom5r 104 Commutation of antecedents. Rotate right. (Contributed by Wolf Lammen, 29-Jul-2012.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜏 → (𝜑 → (𝜓 → (𝜒 → (𝜃𝜂)))))
 
Theoremimim12 105 Closed form of imim12i 62 and of 3syl 18. (Contributed by BJ, 16-Jul-2019.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜓𝜒) → (𝜑𝜃))))
 
Theoremjarr 106 Elimination of a nested antecedent. Sometimes called "Syll-Simp" since it is a syllogism applied to ax-1 6 ("Simplification"). (Contributed by Wolf Lammen, 9-May-2013.)
(((𝜑𝜓) → 𝜒) → (𝜓𝜒))
 
Theoremjarri 107 Inference associated with jarr 106. Partial converse of ja 186 (the other partial converse being jarli 126). (Contributed by Wolf Lammen, 20-Sep-2013.)
((𝜑𝜓) → 𝜒)       (𝜓𝜒)
 
Theorempm2.86d 108 Deduction associated with pm2.86 109. (Contributed by NM, 29-Jun-1995.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
(𝜑 → ((𝜓𝜒) → (𝜓𝜃)))       (𝜑 → (𝜓 → (𝜒𝜃)))
 
Theorempm2.86 109 Converse of Axiom ax-2 7. Theorem *2.86 of [WhiteheadRussell] p. 108. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
(((𝜑𝜓) → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
 
Theorempm2.86i 110 Inference associated with pm2.86 109. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
((𝜑𝜓) → (𝜑𝜒))       (𝜑 → (𝜓𝜒))
 
Theoremloolin 111 The Linearity Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz. See loowoz 112 for an alternate axiom. (Contributed by Mel L. O'Cat, 12-Aug-2004.)
(((𝜑𝜓) → (𝜓𝜑)) → (𝜓𝜑))
 
Theoremloowoz 112 An alternate for the Linearity Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz loolin 111, due to Barbara Wozniakowska, Reports on Mathematical Logic 10, 129-137 (1978). (Contributed by Mel L. O'Cat, 8-Aug-2004.)
(((𝜑𝜓) → (𝜑𝜒)) → ((𝜓𝜑) → (𝜓𝜒)))
 
1.2.4  Logical negation

This section makes our first use of the third axiom of propositional calculus, ax-3 8. It introduces logical negation.

 
Theoremcon4 113 Alias for ax-3 8 to be used instead of it for labeling consistency. Its associated inference is con4i 114 and its associated deduction is con4d 115. (Contributed by BJ, 24-Dec-2020.)
((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
 
Theoremcon4i 114 Inference associated with con4 113. Its associated inference is mt4 116.

Remark: this can also be proved using notnot 142 followed by nsyl2 141, giving a shorter proof but depending on more axioms (namely, ax-1 6 and ax-2 7). (Contributed by NM, 29-Dec-1992.)

𝜑 → ¬ 𝜓)       (𝜓𝜑)
 
Theoremcon4d 115 Deduction associated with con4 113. (Contributed by NM, 26-Mar-1995.)
(𝜑 → (¬ 𝜓 → ¬ 𝜒))       (𝜑 → (𝜒𝜓))
 
Theoremmt4 116 The rule of modus tollens. Inference associated with con4i 114. (Contributed by Wolf Lammen, 12-May-2013.)
𝜑    &   𝜓 → ¬ 𝜑)       𝜓
 
Theoremmt4d 117 Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.)
(𝜑𝜓)    &   (𝜑 → (¬ 𝜒 → ¬ 𝜓))       (𝜑𝜒)
 
Theoremmt4i 118 Modus tollens inference. (Contributed by Wolf Lammen, 12-May-2013.)
𝜒    &   (𝜑 → (¬ 𝜓 → ¬ 𝜒))       (𝜑𝜓)
 
Theorempm2.21i 119 A contradiction implies anything. Inference associated with pm2.21 123. Its associated inference is pm2.24ii 120. (Contributed by NM, 16-Sep-1993.)
¬ 𝜑       (𝜑𝜓)
 
Theorempm2.24ii 120 A contradiction implies anything. Inference associated with pm2.21i 119 and pm2.24i 150. (Contributed by NM, 27-Feb-2008.)
𝜑    &    ¬ 𝜑       𝜓
 
Theorempm2.21d 121 A contradiction implies anything. Deduction associated with pm2.21 123. (Contributed by NM, 10-Feb-1996.)
(𝜑 → ¬ 𝜓)       (𝜑 → (𝜓𝜒))
 
Theorempm2.21ddALT 122 Alternate proof of pm2.21dd 194. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑 → ¬ 𝜓)       (𝜑𝜒)
 
Theorempm2.21 123 From a wff and its negation, anything follows. Theorem *2.21 of [WhiteheadRussell] p. 104. Also called the Duns Scotus law. Its commuted form is pm2.24 124 and its associated inference is pm2.21i 119. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 14-Sep-2012.)
𝜑 → (𝜑𝜓))
 
Theorempm2.24 124 Theorem *2.24 of [WhiteheadRussell] p. 104. Its associated inference is pm2.24i 150. Commuted form of pm2.21 123. (Contributed by NM, 3-Jan-2005.)
(𝜑 → (¬ 𝜑𝜓))
 
Theoremjarl 125 Elimination of a nested antecedent. (Contributed by Wolf Lammen, 10-May-2013.)
(((𝜑𝜓) → 𝜒) → (¬ 𝜑𝜒))
 
Theoremjarli 126 Inference associated with jarl 125. Partial converse of ja 186 (the other partial converse being jarri 107). (Contributed by Wolf Lammen, 4-Oct-2013.)
((𝜑𝜓) → 𝜒)       𝜑𝜒)
 
Theorempm2.18d 127 Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Revised to shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.)
(𝜑 → (¬ 𝜓𝜓))       (𝜑𝜓)
 
Theorempm2.18 128 Clavius law, or "consequentia mirabilis" ("admirable consequence"). If a formula is implied by its negation, then it is true. Can be used in proofs by contradiction. Theorem *2.18 of [WhiteheadRussell] p. 103. See also the weak Clavius law pm2.01 188. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 17-Nov-2023.)
((¬ 𝜑𝜑) → 𝜑)
 
Theorempm2.18i 129 Inference associated with the Clavius law pm2.18 128. (Contributed by BJ, 30-Mar-2020.)
𝜑𝜑)       𝜑
 
Theoremnotnotr 130 Double negation elimination. Converse of notnot 142 and one implication of notnotb 314. Theorem *2.14 of [WhiteheadRussell] p. 102. This was the fifth axiom of Frege, specifically Proposition 31 of [Frege1879] p. 44. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true, and formulas for which it is true are called "stable". (Contributed by NM, 29-Dec-1992.) (Proof shortened by David Harvey, 5-Sep-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
(¬ ¬ 𝜑𝜑)
 
Theoremnotnotri 131 Inference associated with notnotr 130. For a shorter proof using ax-2 7, see notnotriALT 132. (Contributed by NM, 27-Feb-2008.) (Proof shortened by Wolf Lammen, 15-Jul-2021.) Remove dependency on ax-2 7. (Revised by Steven Nguyen, 27-Dec-2022.)
¬ ¬ 𝜑       𝜑
 
TheoremnotnotriALT 132 Alternate proof of notnotri 131. The proof via notnotr 130 and ax-mp 5 also has three essential steps, but has a total number of steps equal to 8, instead of the present 7, because it has to construct the formula 𝜑 twice and the formula ¬ ¬ 𝜑 once, whereas the present proof has to construct the formula 𝜑 twice and the formula ¬ 𝜑 once, and therefore makes only one use of wn 3 instead of two. This can be checked by running the Metamath command "MM> SHOW PROOF notnotri / NORMAL". (Contributed by NM, 27-Feb-2008.) (Proof shortened by Wolf Lammen, 15-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ ¬ 𝜑       𝜑
 
Theoremnotnotrd 133 Deduction associated with notnotr 130 and notnotri 131. Double negation elimination rule. A translation of the natural deduction rule ¬ ¬ C , Γ¬ ¬ 𝜓 ⇒ Γ𝜓; see natded 28668. This is Definition NNC in [Pfenning] p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017.)
(𝜑 → ¬ ¬ 𝜓)       (𝜑𝜓)
 
Theoremcon2d 134 A contraposition deduction. (Contributed by NM, 19-Aug-1993.)
(𝜑 → (𝜓 → ¬ 𝜒))       (𝜑 → (𝜒 → ¬ 𝜓))
 
Theoremcon2 135 Contraposition. Theorem *2.03 of [WhiteheadRussell] p. 100. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 12-Feb-2013.)
((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
 
Theoremmt2d 136 Modus tollens deduction. (Contributed by NM, 4-Jul-1994.)
(𝜑𝜒)    &   (𝜑 → (𝜓 → ¬ 𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremmt2i 137 Modus tollens inference. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
𝜒    &   (𝜑 → (𝜓 → ¬ 𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremnsyl3 138 A negated syllogism inference. (Contributed by NM, 1-Dec-1995.)
(𝜑 → ¬ 𝜓)    &   (𝜒𝜓)       (𝜒 → ¬ 𝜑)
 
Theoremcon2i 139 A contraposition inference. Its associated inference is mt2 199. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.)
(𝜑 → ¬ 𝜓)       (𝜓 → ¬ 𝜑)
 
Theoremnsyl 140 A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
(𝜑 → ¬ 𝜓)    &   (𝜒𝜓)       (𝜑 → ¬ 𝜒)
 
Theoremnsyl2 141 A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 14-Nov-2023.)
(𝜑 → ¬ 𝜓)    &   𝜒𝜓)       (𝜑𝜒)
 
Theoremnotnot 142 Double negation introduction. Converse of notnotr 130 and one implication of notnotb 314. Theorem *2.12 of [WhiteheadRussell] p. 101. This was the sixth axiom of Frege, specifically Proposition 41 of [Frege1879] p. 47. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
(𝜑 → ¬ ¬ 𝜑)
 
Theoremnotnoti 143 Inference associated with notnot 142. (Contributed by NM, 27-Feb-2008.)
𝜑        ¬ ¬ 𝜑
 
Theoremnotnotd 144 Deduction associated with notnot 142 and notnoti 143. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.)
(𝜑𝜓)       (𝜑 → ¬ ¬ 𝜓)
 
Theoremcon1d 145 A contraposition deduction. (Contributed by NM, 27-Dec-1992.)
(𝜑 → (¬ 𝜓𝜒))       (𝜑 → (¬ 𝜒𝜓))
 
Theoremcon1 146 Contraposition. Theorem *2.15 of [WhiteheadRussell] p. 102. Its associated inference is con1i 147. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 12-Feb-2013.)
((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
 
Theoremcon1i 147 A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 200. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.)
𝜑𝜓)       𝜓𝜑)
 
Theoremmt3d 148 Modus tollens deduction. (Contributed by NM, 26-Mar-1995.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → (¬ 𝜓𝜒))       (𝜑𝜓)
 
Theoremmt3i 149 Modus tollens inference. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
¬ 𝜒    &   (𝜑 → (¬ 𝜓𝜒))       (𝜑𝜓)
 
Theorempm2.24i 150 Inference associated with pm2.24 124. Its associated inference is pm2.24ii 120. (Contributed by NM, 20-Aug-2001.)
𝜑       𝜑𝜓)
 
Theorempm2.24d 151 Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.)
(𝜑𝜓)       (𝜑 → (¬ 𝜓𝜒))
 
Theoremcon3d 152 A contraposition deduction. Deduction form of con3 153. (Contributed by NM, 10-Jan-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → (¬ 𝜒 → ¬ 𝜓))
 
Theoremcon3 153 Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. Its associated inference is con3i 154. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
Theoremcon3i 154 A contraposition inference. Inference associated with con3 153. Its associated inference is mto 196. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.)
(𝜑𝜓)       𝜓 → ¬ 𝜑)
 
Theoremcon3rr3 155 Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
(𝜑 → (𝜓𝜒))       𝜒 → (𝜑 → ¬ 𝜓))
 
Theoremnsyld 156 A negated syllogism deduction. (Contributed by NM, 9-Apr-2005.)
(𝜑 → (𝜓 → ¬ 𝜒))    &   (𝜑 → (𝜏𝜒))       (𝜑 → (𝜓 → ¬ 𝜏))
 
Theoremnsyli 157 A negated syllogism inference. (Contributed by NM, 3-May-1994.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → ¬ 𝜒)       (𝜑 → (𝜃 → ¬ 𝜓))
 
Theoremnsyl4 158 A negated syllogism inference. (Contributed by NM, 15-Feb-1996.)
(𝜑𝜓)    &   𝜑𝜒)       𝜒𝜓)
 
Theoremnsyl5 159 A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.)
(𝜑𝜓)    &   𝜑𝜒)       𝜓𝜒)
 
Theorempm3.2im 160 Theorem *3.2 of [WhiteheadRussell] p. 111, expressed with primitive connectives (see pm3.2 469). (Contributed by NM, 29-Dec-1992.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
(𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
 
Theoremjc 161 Deduction joining the consequents of two premises. A deduction associated with pm3.2im 160. (Contributed by NM, 28-Dec-1992.)
(𝜑𝜓)    &   (𝜑𝜒)       (𝜑 → ¬ (𝜓 → ¬ 𝜒))
 
Theoremjcn 162 Theorem joining the consequents of two premises. Theorem 8 of [Margaris] p. 60. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
(𝜑 → (¬ 𝜓 → ¬ (𝜑𝜓)))
 
Theoremjcnd 163 Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
(𝜑𝜓)    &   (𝜑 → ¬ 𝜒)       (𝜑 → ¬ (𝜓𝜒))
 
Theoremimpi 164 An importation inference. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 20-Jul-2013.)
(𝜑 → (𝜓𝜒))       (¬ (𝜑 → ¬ 𝜓) → 𝜒)
 
Theoremexpi 165 An exportation inference. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.)
(¬ (𝜑 → ¬ 𝜓) → 𝜒)       (𝜑 → (𝜓𝜒))
 
Theoremsimprim 166 Simplification. Similar to Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
(¬ (𝜑 → ¬ 𝜓) → 𝜓)
 
Theoremsimplim 167 Simplification. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
(¬ (𝜑𝜓) → 𝜑)
 
Theorempm2.5g 168 General instance of Theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 9-Oct-2012.)
(¬ (𝜑𝜓) → (¬ 𝜑𝜒))
 
Theorempm2.5 169 Theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (¬ 𝜑𝜓))
 
Theoremconax1 170 Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.)
(¬ (𝜑𝜓) → ¬ 𝜓)
 
Theoremconax1k 171 Weakening of conax1 170. General instance of pm2.51 172 and of pm2.52 173. (Contributed by BJ, 28-Oct-2023.)
(¬ (𝜑𝜓) → (𝜒 → ¬ 𝜓))
 
Theorempm2.51 172 Theorem *2.51 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (𝜑 → ¬ 𝜓))
 
Theorempm2.52 173 Theorem *2.52 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 8-Oct-2012.)
(¬ (𝜑𝜓) → (¬ 𝜑 → ¬ 𝜓))
 
Theorempm2.521g 174 A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107. (Contributed by BJ, 28-Oct-2023.)
(¬ (𝜑𝜓) → (𝜓𝜒))
 
Theorempm2.521g2 175 A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 8-Oct-2012.)
(¬ (𝜑𝜓) → (𝜒𝜑))
 
Theorempm2.521 176 Theorem *2.521 of [WhiteheadRussell] p. 107. Instance of pm2.521g 174 and of pm2.521g2 175. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (𝜓𝜑))
 
Theoremexpt 177 Exportation theorem pm3.3 448 (closed form of ex 412) expressed with primitive connectives. (Contributed by NM, 28-Dec-1992.)
((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
 
Theoremimpt 178 Importation theorem pm3.1 988 (closed form of imp 406) expressed with primitive connectives. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2013.)
((𝜑 → (𝜓𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒))
 
Theorempm2.61d 179 Deduction eliminating an antecedent. (Contributed by NM, 27-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2013.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (¬ 𝜓𝜒))       (𝜑𝜒)
 
Theorempm2.61d1 180 Inference eliminating an antecedent. (Contributed by NM, 15-Jul-2005.)
(𝜑 → (𝜓𝜒))    &   𝜓𝜒)       (𝜑𝜒)
 
Theorempm2.61d2 181 Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.)
(𝜑 → (¬ 𝜓𝜒))    &   (𝜓𝜒)       (𝜑𝜒)
 
Theorempm2.61i 182 Inference eliminating an antecedent. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2023.)
(𝜑𝜓)    &   𝜑𝜓)       𝜓
 
Theorempm2.61ii 183 Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
𝜑 → (¬ 𝜓𝜒))    &   (𝜑𝜒)    &   (𝜓𝜒)       𝜒
 
Theorempm2.61nii 184 Inference eliminating two antecedents. (Contributed by NM, 13-Jul-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
(𝜑 → (𝜓𝜒))    &   𝜑𝜒)    &   𝜓𝜒)       𝜒
 
Theorempm2.61iii 185 Inference eliminating three antecedents. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Wolf Lammen, 22-Sep-2013.)
𝜑 → (¬ 𝜓 → (¬ 𝜒𝜃)))    &   (𝜑𝜃)    &   (𝜓𝜃)    &   (𝜒𝜃)       𝜃
 
Theoremja 186 Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.)
𝜑𝜒)    &   (𝜓𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremjad 187 Deduction form of ja 186. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝜑 → (¬ 𝜓𝜃))    &   (𝜑 → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) → 𝜃))
 
Theorempm2.01 188 Weak Clavius law. If a formula implies its negation, then it is false. A form of "reductio ad absurdum", which can be used in proofs by contradiction. Theorem *2.01 of [WhiteheadRussell] p. 100. Provable in minimal calculus, contrary to the Clavius law pm2.18 128. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 21-Nov-2008.) (Proof shortened by Wolf Lammen, 31-Oct-2012.)
((𝜑 → ¬ 𝜑) → ¬ 𝜑)
 
Theorempm2.01d 189 Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Mar-2013.)
(𝜑 → (𝜓 → ¬ 𝜓))       (𝜑 → ¬ 𝜓)
 
Theorempm2.6 190 Theorem *2.6 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓))
 
Theorempm2.61 191 Theorem *2.61 of [WhiteheadRussell] p. 107. Useful for eliminating an antecedent. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.)
((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓))
 
Theorempm2.65 192 Theorem *2.65 of [WhiteheadRussell] p. 107. Proof by contradiction. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 8-Mar-2013.)
((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
 
Theorempm2.65i 193 Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
(𝜑𝜓)    &   (𝜑 → ¬ 𝜓)        ¬ 𝜑
 
Theorempm2.21dd 194 A contradiction implies anything. Deduction from pm2.21 123. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 22-Jul-2019.)
(𝜑𝜓)    &   (𝜑 → ¬ 𝜓)       (𝜑𝜒)
 
Theorempm2.65d 195 Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓 → ¬ 𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremmto 196 The rule of modus tollens. The rule says, "if 𝜓 is not true, and 𝜑 implies 𝜓, then 𝜑 must also be not true". Modus tollens is short for "modus tollendo tollens", a Latin phrase that means "the mode that by denying denies" - remark in [Sanford] p. 39. It is also called denying the consequent. Modus tollens is closely related to modus ponens ax-mp 5. Note that this rule is also valid in intuitionistic logic. Inference associated with con3i 154. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
¬ 𝜓    &   (𝜑𝜓)        ¬ 𝜑
 
Theoremmtod 197 Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremmtoi 198 Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
¬ 𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremmt2 199 A rule similar to modus tollens. Inference associated with con2i 139. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.)
𝜓    &   (𝜑 → ¬ 𝜓)        ¬ 𝜑
 
Theoremmt3 200 A rule similar to modus tollens. Inference associated with con1i 147. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
¬ 𝜓    &   𝜑𝜓)       𝜑
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >