Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-2idl | Structured version Visualization version GIF version |
Description: Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
df-2idl | ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2idl 20415 | . 2 class 2Ideal | |
2 | vr | . . 3 setvar 𝑟 | |
3 | cvv 3422 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . 5 class 𝑟 |
5 | clidl 20347 | . . . . 5 class LIdeal | |
6 | 4, 5 | cfv 6418 | . . . 4 class (LIdeal‘𝑟) |
7 | coppr 19776 | . . . . . 6 class oppr | |
8 | 4, 7 | cfv 6418 | . . . . 5 class (oppr‘𝑟) |
9 | 8, 5 | cfv 6418 | . . . 4 class (LIdeal‘(oppr‘𝑟)) |
10 | 6, 9 | cin 3882 | . . 3 class ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) |
11 | 2, 3, 10 | cmpt 5153 | . 2 class (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) |
12 | 1, 11 | wceq 1539 | 1 wff 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) |
Colors of variables: wff setvar class |
This definition is referenced by: 2idlval 20417 |
Copyright terms: Public domain | W3C validator |