| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2idl | Structured version Visualization version GIF version | ||
| Description: Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| df-2idl | ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2idl 21259 | . 2 class 2Ideal | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑟 |
| 5 | clidl 21216 | . . . . 5 class LIdeal | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (LIdeal‘𝑟) |
| 7 | coppr 20333 | . . . . . 6 class oppr | |
| 8 | 4, 7 | cfv 6561 | . . . . 5 class (oppr‘𝑟) |
| 9 | 8, 5 | cfv 6561 | . . . 4 class (LIdeal‘(oppr‘𝑟)) |
| 10 | 6, 9 | cin 3950 | . . 3 class ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) |
| 11 | 2, 3, 10 | cmpt 5225 | . 2 class (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) |
| 12 | 1, 11 | wceq 1540 | 1 wff 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 2idlval 21261 |
| Copyright terms: Public domain | W3C validator |