MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Visualization version   GIF version

Theorem 2idlval 20504
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i 𝐼 = (LIdeal‘𝑅)
2idlval.o 𝑂 = (oppr𝑅)
2idlval.j 𝐽 = (LIdeal‘𝑂)
2idlval.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlval 𝑇 = (𝐼𝐽)

Proof of Theorem 2idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2 𝑇 = (2Ideal‘𝑅)
2 fveq2 6774 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
3 2idlval.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
42, 3eqtr4di 2796 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼)
5 fveq2 6774 . . . . . . . 8 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
6 2idlval.o . . . . . . . 8 𝑂 = (oppr𝑅)
75, 6eqtr4di 2796 . . . . . . 7 (𝑟 = 𝑅 → (oppr𝑟) = 𝑂)
87fveq2d 6778 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = (LIdeal‘𝑂))
9 2idlval.j . . . . . 6 𝐽 = (LIdeal‘𝑂)
108, 9eqtr4di 2796 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = 𝐽)
114, 10ineq12d 4147 . . . 4 (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))) = (𝐼𝐽))
12 df-2idl 20503 . . . 4 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
133fvexi 6788 . . . . 5 𝐼 ∈ V
1413inex1 5241 . . . 4 (𝐼𝐽) ∈ V
1511, 12, 14fvmpt 6875 . . 3 (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
16 fvprc 6766 . . . 4 𝑅 ∈ V → (2Ideal‘𝑅) = ∅)
17 inss1 4162 . . . . 5 (𝐼𝐽) ⊆ 𝐼
18 fvprc 6766 . . . . . 6 𝑅 ∈ V → (LIdeal‘𝑅) = ∅)
193, 18eqtrid 2790 . . . . 5 𝑅 ∈ V → 𝐼 = ∅)
20 sseq0 4333 . . . . 5 (((𝐼𝐽) ⊆ 𝐼𝐼 = ∅) → (𝐼𝐽) = ∅)
2117, 19, 20sylancr 587 . . . 4 𝑅 ∈ V → (𝐼𝐽) = ∅)
2216, 21eqtr4d 2781 . . 3 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
2315, 22pm2.61i 182 . 2 (2Ideal‘𝑅) = (𝐼𝐽)
241, 23eqtri 2766 1 𝑇 = (𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  c0 4256  cfv 6433  opprcoppr 19861  LIdealclidl 20432  2Idealc2idl 20502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-2idl 20503
This theorem is referenced by:  2idlcpbl  20505  qus1  20506  qusrhm  20508  crng2idl  20510
  Copyright terms: Public domain W3C validator