MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Visualization version   GIF version

Theorem 2idlval 20858
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i 𝐼 = (LIdealβ€˜π‘…)
2idlval.o 𝑂 = (opprβ€˜π‘…)
2idlval.j 𝐽 = (LIdealβ€˜π‘‚)
2idlval.t 𝑇 = (2Idealβ€˜π‘…)
Assertion
Ref Expression
2idlval 𝑇 = (𝐼 ∩ 𝐽)

Proof of Theorem 2idlval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2 𝑇 = (2Idealβ€˜π‘…)
2 fveq2 6892 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜π‘Ÿ) = (LIdealβ€˜π‘…))
3 2idlval.i . . . . . 6 𝐼 = (LIdealβ€˜π‘…)
42, 3eqtr4di 2791 . . . . 5 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜π‘Ÿ) = 𝐼)
5 fveq2 6892 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (opprβ€˜π‘Ÿ) = (opprβ€˜π‘…))
6 2idlval.o . . . . . . . 8 𝑂 = (opprβ€˜π‘…)
75, 6eqtr4di 2791 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (opprβ€˜π‘Ÿ) = 𝑂)
87fveq2d 6896 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜(opprβ€˜π‘Ÿ)) = (LIdealβ€˜π‘‚))
9 2idlval.j . . . . . 6 𝐽 = (LIdealβ€˜π‘‚)
108, 9eqtr4di 2791 . . . . 5 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜(opprβ€˜π‘Ÿ)) = 𝐽)
114, 10ineq12d 4214 . . . 4 (π‘Ÿ = 𝑅 β†’ ((LIdealβ€˜π‘Ÿ) ∩ (LIdealβ€˜(opprβ€˜π‘Ÿ))) = (𝐼 ∩ 𝐽))
12 df-2idl 20857 . . . 4 2Ideal = (π‘Ÿ ∈ V ↦ ((LIdealβ€˜π‘Ÿ) ∩ (LIdealβ€˜(opprβ€˜π‘Ÿ))))
133fvexi 6906 . . . . 5 𝐼 ∈ V
1413inex1 5318 . . . 4 (𝐼 ∩ 𝐽) ∈ V
1511, 12, 14fvmpt 6999 . . 3 (𝑅 ∈ V β†’ (2Idealβ€˜π‘…) = (𝐼 ∩ 𝐽))
16 fvprc 6884 . . . 4 (Β¬ 𝑅 ∈ V β†’ (2Idealβ€˜π‘…) = βˆ…)
17 inss1 4229 . . . . 5 (𝐼 ∩ 𝐽) βŠ† 𝐼
18 fvprc 6884 . . . . . 6 (Β¬ 𝑅 ∈ V β†’ (LIdealβ€˜π‘…) = βˆ…)
193, 18eqtrid 2785 . . . . 5 (Β¬ 𝑅 ∈ V β†’ 𝐼 = βˆ…)
20 sseq0 4400 . . . . 5 (((𝐼 ∩ 𝐽) βŠ† 𝐼 ∧ 𝐼 = βˆ…) β†’ (𝐼 ∩ 𝐽) = βˆ…)
2117, 19, 20sylancr 588 . . . 4 (Β¬ 𝑅 ∈ V β†’ (𝐼 ∩ 𝐽) = βˆ…)
2216, 21eqtr4d 2776 . . 3 (Β¬ 𝑅 ∈ V β†’ (2Idealβ€˜π‘…) = (𝐼 ∩ 𝐽))
2315, 22pm2.61i 182 . 2 (2Idealβ€˜π‘…) = (𝐼 ∩ 𝐽)
241, 23eqtri 2761 1 𝑇 = (𝐼 ∩ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1542   ∈ wcel 2107  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  β€˜cfv 6544  opprcoppr 20149  LIdealclidl 20783  2Idealc2idl 20856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-2idl 20857
This theorem is referenced by:  df2idl2  20860  2idl0  20863  2idl1  20864  2idlelb  20865  2idllidld  20866  2idlridld  20867  qus1  20872  qusrhm  20874  crng2idl  20877  oppr2idl  32600  qsdrngilem  32608  qsdrngi  32609
  Copyright terms: Public domain W3C validator