| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idlval | Structured version Visualization version GIF version | ||
| Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.t | . 2 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 2 | fveq2 6881 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
| 3 | 2idlval.i | . . . . . 6 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2789 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
| 5 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
| 6 | 2idlval.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
| 8 | 7 | fveq2d 6885 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
| 9 | 2idlval.j | . . . . . 6 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 10 | 8, 9 | eqtr4di 2789 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
| 11 | 4, 10 | ineq12d 4201 | . . . 4 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
| 12 | df-2idl 21216 | . . . 4 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 13 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝐼 ∈ V |
| 14 | 13 | inex1 5292 | . . . 4 ⊢ (𝐼 ∩ 𝐽) ∈ V |
| 15 | 11, 12, 14 | fvmpt 6991 | . . 3 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 16 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = ∅) | |
| 17 | inss1 4217 | . . . . 5 ⊢ (𝐼 ∩ 𝐽) ⊆ 𝐼 | |
| 18 | fvprc 6873 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (LIdeal‘𝑅) = ∅) | |
| 19 | 3, 18 | eqtrid 2783 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐼 = ∅) |
| 20 | sseq0 4383 | . . . . 5 ⊢ (((𝐼 ∩ 𝐽) ⊆ 𝐼 ∧ 𝐼 = ∅) → (𝐼 ∩ 𝐽) = ∅) | |
| 21 | 17, 19, 20 | sylancr 587 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐼 ∩ 𝐽) = ∅) |
| 22 | 16, 21 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 23 | 15, 22 | pm2.61i 182 | . 2 ⊢ (2Ideal‘𝑅) = (𝐼 ∩ 𝐽) |
| 24 | 1, 23 | eqtri 2759 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ‘cfv 6536 opprcoppr 20301 LIdealclidl 21172 2Idealc2idl 21215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-2idl 21216 |
| This theorem is referenced by: 2idlelb 21219 2idllidld 21220 2idlridld 21221 2idl0 21226 2idl1 21227 qus1 21240 qusrhm 21242 crng2idl 21247 oppr2idl 33506 qsdrngilem 33514 qsdrngi 33515 |
| Copyright terms: Public domain | W3C validator |