![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2idlval | Structured version Visualization version GIF version |
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
2idlval.i | β’ πΌ = (LIdealβπ ) |
2idlval.o | β’ π = (opprβπ ) |
2idlval.j | β’ π½ = (LIdealβπ) |
2idlval.t | β’ π = (2Idealβπ ) |
Ref | Expression |
---|---|
2idlval | β’ π = (πΌ β© π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlval.t | . 2 β’ π = (2Idealβπ ) | |
2 | fveq2 6892 | . . . . . 6 β’ (π = π β (LIdealβπ) = (LIdealβπ )) | |
3 | 2idlval.i | . . . . . 6 β’ πΌ = (LIdealβπ ) | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 β’ (π = π β (LIdealβπ) = πΌ) |
5 | fveq2 6892 | . . . . . . . 8 β’ (π = π β (opprβπ) = (opprβπ )) | |
6 | 2idlval.o | . . . . . . . 8 β’ π = (opprβπ ) | |
7 | 5, 6 | eqtr4di 2791 | . . . . . . 7 β’ (π = π β (opprβπ) = π) |
8 | 7 | fveq2d 6896 | . . . . . 6 β’ (π = π β (LIdealβ(opprβπ)) = (LIdealβπ)) |
9 | 2idlval.j | . . . . . 6 β’ π½ = (LIdealβπ) | |
10 | 8, 9 | eqtr4di 2791 | . . . . 5 β’ (π = π β (LIdealβ(opprβπ)) = π½) |
11 | 4, 10 | ineq12d 4214 | . . . 4 β’ (π = π β ((LIdealβπ) β© (LIdealβ(opprβπ))) = (πΌ β© π½)) |
12 | df-2idl 20857 | . . . 4 β’ 2Ideal = (π β V β¦ ((LIdealβπ) β© (LIdealβ(opprβπ)))) | |
13 | 3 | fvexi 6906 | . . . . 5 β’ πΌ β V |
14 | 13 | inex1 5318 | . . . 4 β’ (πΌ β© π½) β V |
15 | 11, 12, 14 | fvmpt 6999 | . . 3 β’ (π β V β (2Idealβπ ) = (πΌ β© π½)) |
16 | fvprc 6884 | . . . 4 β’ (Β¬ π β V β (2Idealβπ ) = β ) | |
17 | inss1 4229 | . . . . 5 β’ (πΌ β© π½) β πΌ | |
18 | fvprc 6884 | . . . . . 6 β’ (Β¬ π β V β (LIdealβπ ) = β ) | |
19 | 3, 18 | eqtrid 2785 | . . . . 5 β’ (Β¬ π β V β πΌ = β ) |
20 | sseq0 4400 | . . . . 5 β’ (((πΌ β© π½) β πΌ β§ πΌ = β ) β (πΌ β© π½) = β ) | |
21 | 17, 19, 20 | sylancr 588 | . . . 4 β’ (Β¬ π β V β (πΌ β© π½) = β ) |
22 | 16, 21 | eqtr4d 2776 | . . 3 β’ (Β¬ π β V β (2Idealβπ ) = (πΌ β© π½)) |
23 | 15, 22 | pm2.61i 182 | . 2 β’ (2Idealβπ ) = (πΌ β© π½) |
24 | 1, 23 | eqtri 2761 | 1 β’ π = (πΌ β© π½) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1542 β wcel 2107 Vcvv 3475 β© cin 3948 β wss 3949 β c0 4323 βcfv 6544 opprcoppr 20149 LIdealclidl 20783 2Idealc2idl 20856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-2idl 20857 |
This theorem is referenced by: df2idl2 20860 2idl0 20863 2idl1 20864 2idlelb 20865 2idllidld 20866 2idlridld 20867 qus1 20872 qusrhm 20874 crng2idl 20877 oppr2idl 32600 qsdrngilem 32608 qsdrngi 32609 |
Copyright terms: Public domain | W3C validator |