MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Visualization version   GIF version

Theorem 2idlval 21217
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i 𝐼 = (LIdeal‘𝑅)
2idlval.o 𝑂 = (oppr𝑅)
2idlval.j 𝐽 = (LIdeal‘𝑂)
2idlval.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlval 𝑇 = (𝐼𝐽)

Proof of Theorem 2idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2 𝑇 = (2Ideal‘𝑅)
2 fveq2 6881 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
3 2idlval.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
42, 3eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼)
5 fveq2 6881 . . . . . . . 8 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
6 2idlval.o . . . . . . . 8 𝑂 = (oppr𝑅)
75, 6eqtr4di 2789 . . . . . . 7 (𝑟 = 𝑅 → (oppr𝑟) = 𝑂)
87fveq2d 6885 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = (LIdeal‘𝑂))
9 2idlval.j . . . . . 6 𝐽 = (LIdeal‘𝑂)
108, 9eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = 𝐽)
114, 10ineq12d 4201 . . . 4 (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))) = (𝐼𝐽))
12 df-2idl 21216 . . . 4 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
133fvexi 6895 . . . . 5 𝐼 ∈ V
1413inex1 5292 . . . 4 (𝐼𝐽) ∈ V
1511, 12, 14fvmpt 6991 . . 3 (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
16 fvprc 6873 . . . 4 𝑅 ∈ V → (2Ideal‘𝑅) = ∅)
17 inss1 4217 . . . . 5 (𝐼𝐽) ⊆ 𝐼
18 fvprc 6873 . . . . . 6 𝑅 ∈ V → (LIdeal‘𝑅) = ∅)
193, 18eqtrid 2783 . . . . 5 𝑅 ∈ V → 𝐼 = ∅)
20 sseq0 4383 . . . . 5 (((𝐼𝐽) ⊆ 𝐼𝐼 = ∅) → (𝐼𝐽) = ∅)
2117, 19, 20sylancr 587 . . . 4 𝑅 ∈ V → (𝐼𝐽) = ∅)
2216, 21eqtr4d 2774 . . 3 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
2315, 22pm2.61i 182 . 2 (2Ideal‘𝑅) = (𝐼𝐽)
241, 23eqtri 2759 1 𝑇 = (𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  wss 3931  c0 4313  cfv 6536  opprcoppr 20301  LIdealclidl 21172  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-2idl 21216
This theorem is referenced by:  2idlelb  21219  2idllidld  21220  2idlridld  21221  2idl0  21226  2idl1  21227  qus1  21240  qusrhm  21242  crng2idl  21247  oppr2idl  33506  qsdrngilem  33514  qsdrngi  33515
  Copyright terms: Public domain W3C validator