| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idlval | Structured version Visualization version GIF version | ||
| Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.t | . 2 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 2 | fveq2 6860 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
| 3 | 2idlval.i | . . . . . 6 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
| 5 | fveq2 6860 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
| 6 | 2idlval.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
| 8 | 7 | fveq2d 6864 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
| 9 | 2idlval.j | . . . . . 6 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 10 | 8, 9 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
| 11 | 4, 10 | ineq12d 4186 | . . . 4 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
| 12 | df-2idl 21166 | . . . 4 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 13 | 3 | fvexi 6874 | . . . . 5 ⊢ 𝐼 ∈ V |
| 14 | 13 | inex1 5274 | . . . 4 ⊢ (𝐼 ∩ 𝐽) ∈ V |
| 15 | 11, 12, 14 | fvmpt 6970 | . . 3 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 16 | fvprc 6852 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = ∅) | |
| 17 | inss1 4202 | . . . . 5 ⊢ (𝐼 ∩ 𝐽) ⊆ 𝐼 | |
| 18 | fvprc 6852 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (LIdeal‘𝑅) = ∅) | |
| 19 | 3, 18 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐼 = ∅) |
| 20 | sseq0 4368 | . . . . 5 ⊢ (((𝐼 ∩ 𝐽) ⊆ 𝐼 ∧ 𝐼 = ∅) → (𝐼 ∩ 𝐽) = ∅) | |
| 21 | 17, 19, 20 | sylancr 587 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐼 ∩ 𝐽) = ∅) |
| 22 | 16, 21 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 23 | 15, 22 | pm2.61i 182 | . 2 ⊢ (2Ideal‘𝑅) = (𝐼 ∩ 𝐽) |
| 24 | 1, 23 | eqtri 2753 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ‘cfv 6513 opprcoppr 20251 LIdealclidl 21122 2Idealc2idl 21165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-2idl 21166 |
| This theorem is referenced by: 2idlelb 21169 2idllidld 21170 2idlridld 21171 2idl0 21176 2idl1 21177 qus1 21190 qusrhm 21192 crng2idl 21197 oppr2idl 33463 qsdrngilem 33471 qsdrngi 33472 |
| Copyright terms: Public domain | W3C validator |