Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2idlval | Structured version Visualization version GIF version |
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlval.t | . 2 ⊢ 𝑇 = (2Ideal‘𝑅) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
3 | 2idlval.i | . . . . . 6 ⊢ 𝐼 = (LIdeal‘𝑅) | |
4 | 2, 3 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
5 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
6 | 2idlval.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
7 | 5, 6 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
8 | 7 | fveq2d 6760 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
9 | 2idlval.j | . . . . . 6 ⊢ 𝐽 = (LIdeal‘𝑂) | |
10 | 8, 9 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
11 | 4, 10 | ineq12d 4144 | . . . 4 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
12 | df-2idl 20416 | . . . 4 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
13 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝐼 ∈ V |
14 | 13 | inex1 5236 | . . . 4 ⊢ (𝐼 ∩ 𝐽) ∈ V |
15 | 11, 12, 14 | fvmpt 6857 | . . 3 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
16 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = ∅) | |
17 | inss1 4159 | . . . . 5 ⊢ (𝐼 ∩ 𝐽) ⊆ 𝐼 | |
18 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (LIdeal‘𝑅) = ∅) | |
19 | 3, 18 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐼 = ∅) |
20 | sseq0 4330 | . . . . 5 ⊢ (((𝐼 ∩ 𝐽) ⊆ 𝐼 ∧ 𝐼 = ∅) → (𝐼 ∩ 𝐽) = ∅) | |
21 | 17, 19, 20 | sylancr 586 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐼 ∩ 𝐽) = ∅) |
22 | 16, 21 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
23 | 15, 22 | pm2.61i 182 | . 2 ⊢ (2Ideal‘𝑅) = (𝐼 ∩ 𝐽) |
24 | 1, 23 | eqtri 2766 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 opprcoppr 19776 LIdealclidl 20347 2Idealc2idl 20415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-2idl 20416 |
This theorem is referenced by: 2idlcpbl 20418 qus1 20419 qusrhm 20421 crng2idl 20423 |
Copyright terms: Public domain | W3C validator |