MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Visualization version   GIF version

Theorem 2idlval 19998
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i 𝐼 = (LIdeal‘𝑅)
2idlval.o 𝑂 = (oppr𝑅)
2idlval.j 𝐽 = (LIdeal‘𝑂)
2idlval.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlval 𝑇 = (𝐼𝐽)

Proof of Theorem 2idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2 𝑇 = (2Ideal‘𝑅)
2 fveq2 6663 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
3 2idlval.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
42, 3syl6eqr 2872 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼)
5 fveq2 6663 . . . . . . . 8 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
6 2idlval.o . . . . . . . 8 𝑂 = (oppr𝑅)
75, 6syl6eqr 2872 . . . . . . 7 (𝑟 = 𝑅 → (oppr𝑟) = 𝑂)
87fveq2d 6667 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = (LIdeal‘𝑂))
9 2idlval.j . . . . . 6 𝐽 = (LIdeal‘𝑂)
108, 9syl6eqr 2872 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = 𝐽)
114, 10ineq12d 4188 . . . 4 (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))) = (𝐼𝐽))
12 df-2idl 19997 . . . 4 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
133fvexi 6677 . . . . 5 𝐼 ∈ V
1413inex1 5212 . . . 4 (𝐼𝐽) ∈ V
1511, 12, 14fvmpt 6761 . . 3 (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
16 fvprc 6656 . . . 4 𝑅 ∈ V → (2Ideal‘𝑅) = ∅)
17 inss1 4203 . . . . 5 (𝐼𝐽) ⊆ 𝐼
18 fvprc 6656 . . . . . 6 𝑅 ∈ V → (LIdeal‘𝑅) = ∅)
193, 18syl5eq 2866 . . . . 5 𝑅 ∈ V → 𝐼 = ∅)
20 sseq0 4351 . . . . 5 (((𝐼𝐽) ⊆ 𝐼𝐼 = ∅) → (𝐼𝐽) = ∅)
2117, 19, 20sylancr 589 . . . 4 𝑅 ∈ V → (𝐼𝐽) = ∅)
2216, 21eqtr4d 2857 . . 3 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
2315, 22pm2.61i 184 . 2 (2Ideal‘𝑅) = (𝐼𝐽)
241, 23eqtri 2842 1 𝑇 = (𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1531  wcel 2108  Vcvv 3493  cin 3933  wss 3934  c0 4289  cfv 6348  opprcoppr 19364  LIdealclidl 19934  2Idealc2idl 19996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-2idl 19997
This theorem is referenced by:  2idlcpbl  19999  qus1  20000  qusrhm  20002  crng2idl  20004
  Copyright terms: Public domain W3C validator