Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2idlval | Structured version Visualization version GIF version |
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlval.t | . 2 ⊢ 𝑇 = (2Ideal‘𝑅) | |
2 | fveq2 6774 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
3 | 2idlval.i | . . . . . 6 ⊢ 𝐼 = (LIdeal‘𝑅) | |
4 | 2, 3 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
5 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
6 | 2idlval.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
7 | 5, 6 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
8 | 7 | fveq2d 6778 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
9 | 2idlval.j | . . . . . 6 ⊢ 𝐽 = (LIdeal‘𝑂) | |
10 | 8, 9 | eqtr4di 2796 | . . . . 5 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
11 | 4, 10 | ineq12d 4147 | . . . 4 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
12 | df-2idl 20503 | . . . 4 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
13 | 3 | fvexi 6788 | . . . . 5 ⊢ 𝐼 ∈ V |
14 | 13 | inex1 5241 | . . . 4 ⊢ (𝐼 ∩ 𝐽) ∈ V |
15 | 11, 12, 14 | fvmpt 6875 | . . 3 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
16 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = ∅) | |
17 | inss1 4162 | . . . . 5 ⊢ (𝐼 ∩ 𝐽) ⊆ 𝐼 | |
18 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (LIdeal‘𝑅) = ∅) | |
19 | 3, 18 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐼 = ∅) |
20 | sseq0 4333 | . . . . 5 ⊢ (((𝐼 ∩ 𝐽) ⊆ 𝐼 ∧ 𝐼 = ∅) → (𝐼 ∩ 𝐽) = ∅) | |
21 | 17, 19, 20 | sylancr 587 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝐼 ∩ 𝐽) = ∅) |
22 | 16, 21 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
23 | 15, 22 | pm2.61i 182 | . 2 ⊢ (2Ideal‘𝑅) = (𝐼 ∩ 𝐽) |
24 | 1, 23 | eqtri 2766 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 opprcoppr 19861 LIdealclidl 20432 2Idealc2idl 20502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-2idl 20503 |
This theorem is referenced by: 2idlcpbl 20505 qus1 20506 qusrhm 20508 crng2idl 20510 |
Copyright terms: Public domain | W3C validator |