MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Visualization version   GIF version

Theorem 2idlval 21181
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i 𝐼 = (LIdeal‘𝑅)
2idlval.o 𝑂 = (oppr𝑅)
2idlval.j 𝐽 = (LIdeal‘𝑂)
2idlval.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlval 𝑇 = (𝐼𝐽)

Proof of Theorem 2idlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2 𝑇 = (2Ideal‘𝑅)
2 fveq2 6817 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
3 2idlval.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
42, 3eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼)
5 fveq2 6817 . . . . . . . 8 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
6 2idlval.o . . . . . . . 8 𝑂 = (oppr𝑅)
75, 6eqtr4di 2783 . . . . . . 7 (𝑟 = 𝑅 → (oppr𝑟) = 𝑂)
87fveq2d 6821 . . . . . 6 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = (LIdeal‘𝑂))
9 2idlval.j . . . . . 6 𝐽 = (LIdeal‘𝑂)
108, 9eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (LIdeal‘(oppr𝑟)) = 𝐽)
114, 10ineq12d 4169 . . . 4 (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))) = (𝐼𝐽))
12 df-2idl 21180 . . . 4 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
133fvexi 6831 . . . . 5 𝐼 ∈ V
1413inex1 5253 . . . 4 (𝐼𝐽) ∈ V
1511, 12, 14fvmpt 6924 . . 3 (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
16 fvprc 6809 . . . 4 𝑅 ∈ V → (2Ideal‘𝑅) = ∅)
17 inss1 4185 . . . . 5 (𝐼𝐽) ⊆ 𝐼
18 fvprc 6809 . . . . . 6 𝑅 ∈ V → (LIdeal‘𝑅) = ∅)
193, 18eqtrid 2777 . . . . 5 𝑅 ∈ V → 𝐼 = ∅)
20 sseq0 4351 . . . . 5 (((𝐼𝐽) ⊆ 𝐼𝐼 = ∅) → (𝐼𝐽) = ∅)
2117, 19, 20sylancr 587 . . . 4 𝑅 ∈ V → (𝐼𝐽) = ∅)
2216, 21eqtr4d 2768 . . 3 𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼𝐽))
2315, 22pm2.61i 182 . 2 (2Ideal‘𝑅) = (𝐼𝐽)
241, 23eqtri 2753 1 𝑇 = (𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2110  Vcvv 3434  cin 3899  wss 3900  c0 4281  cfv 6477  opprcoppr 20247  LIdealclidl 21136  2Idealc2idl 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-2idl 21180
This theorem is referenced by:  2idlelb  21183  2idllidld  21184  2idlridld  21185  2idl0  21190  2idl1  21191  qus1  21204  qusrhm  21206  crng2idl  21211  oppr2idl  33441  qsdrngilem  33449  qsdrngi  33450
  Copyright terms: Public domain W3C validator