| Metamath
Proof Explorer Theorem List (p. 212 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | islbs2 21101* | An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | ||
| Theorem | islbs3 21102* | An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)))) | ||
| Theorem | lbsacsbs 21103 | Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 21101. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐴 = (LSubSp‘𝑊) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) | ||
| Theorem | lvecdim 21104 | The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 21091 and lbsacsbs 21103 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18475. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ≈ 𝑇) | ||
| Theorem | lbsextlem1 21105* | Lemma for lbsext 21110. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⇒ ⊢ (𝜑 → 𝑆 ≠ ∅) | ||
| Theorem | lbsextlem2 21106* | Lemma for lbsext 21110. Since 𝐴 is a chain (actually, we only need it to be closed under binary union), the union 𝑇 of the spans of each individual element of 𝐴 is a subspace, and it contains all of ∪ 𝐴 (except for our target vector 𝑥- we are trying to make 𝑥 a linear combination of all the other vectors in some set from 𝐴). (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} & ⊢ 𝑃 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝐴) & ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⇒ ⊢ (𝜑 → (𝑇 ∈ 𝑃 ∧ (∪ 𝐴 ∖ {𝑥}) ⊆ 𝑇)) | ||
| Theorem | lbsextlem3 21107* | Lemma for lbsext 21110. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} & ⊢ 𝑃 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝐴) & ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑆) | ||
| Theorem | lbsextlem4 21108* | Lemma for lbsext 21110. lbsextlem3 21107 satisfies the conditions for the application of Zorn's lemma zorn 10408 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} & ⊢ (𝜑 → 𝒫 𝑉 ∈ dom card) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) | ||
| Theorem | lbsextg 21109* | For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) | ||
| Theorem | lbsext 21110* | For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) | ||
| Theorem | lbsexg 21111 | Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((CHOICE ∧ 𝑊 ∈ LVec) → 𝐽 ≠ ∅) | ||
| Theorem | lbsex 21112 | Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐽 ≠ ∅) | ||
| Theorem | lvecprop2d 21113* | If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 21114 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) | ||
| Theorem | lvecpropd 21114* | If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) | ||
| Syntax | csra 21115 | Extend class notation with the subring algebra generator. |
| class subringAlg | ||
| Syntax | crglmod 21116 | Extend class notation with the left module induced by a ring over itself. |
| class ringLMod | ||
| Definition | df-sra 21117* | Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑤)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑤)〉))) | ||
| Definition | df-rgmod 21118 | Any ring can be regarded as a left algebra over itself. The function ringLMod associates with any ring the left algebra consisting in the ring itself regarded as a left algebra over itself. It has an inner product which is simply the ring product. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) | ||
| Theorem | sraval 21119 | Lemma for srabase 21121 through sravsca 21125. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | ||
| Theorem | sralem 21120 | Lemma for srabase 21121 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) | ||
| Theorem | srabase 21121 | Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝐴)) | ||
| Theorem | sraaddg 21122 | Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (+g‘𝑊) = (+g‘𝐴)) | ||
| Theorem | sramulr 21123 | Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (.r‘𝐴)) | ||
| Theorem | srasca 21124 | The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | ||
| Theorem | sravsca 21125 | The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) | ||
| Theorem | sraip 21126 | The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) | ||
| Theorem | sratset 21127 | Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) | ||
| Theorem | sratopn 21128 | Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴)) | ||
| Theorem | srads 21129 | Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) | ||
| Theorem | sraring 21130 | Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) | ||
| Theorem | sralmod 21131 | The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod) | ||
| Theorem | sralmod0 21132 | The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 0 = (0g‘𝑊)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → 0 = (0g‘𝐴)) | ||
| Theorem | issubrgd 21133* | Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 1 = (1r‘𝐼)) & ⊢ (𝜑 → · = (.r‘𝐼)) & ⊢ (𝜑 → 1 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) | ||
| Theorem | rlmfn 21134 | ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| ⊢ ringLMod Fn V | ||
| Theorem | rlmval 21135 | Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) | ||
| Theorem | rlmval2 21136 | Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | ||
| Theorem | rlmbas 21137 | Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | ||
| Theorem | rlmplusg 21138 | Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | ||
| Theorem | rlm0 21139 | Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (0g‘𝑅) = (0g‘(ringLMod‘𝑅)) | ||
| Theorem | rlmsub 21140 | Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ (-g‘𝑅) = (-g‘(ringLMod‘𝑅)) | ||
| Theorem | rlmmulr 21141 | Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (.r‘𝑅) = (.r‘(ringLMod‘𝑅)) | ||
| Theorem | rlmsca 21142 | Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| ⊢ (𝑅 ∈ 𝑋 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | ||
| Theorem | rlmsca2 21143 | Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | ||
| Theorem | rlmvsca 21144 | Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | ||
| Theorem | rlmtopn 21145 | Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅)) | ||
| Theorem | rlmds 21146 | Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (dist‘𝑅) = (dist‘(ringLMod‘𝑅)) | ||
| Theorem | rlmlmod 21147 | The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | ||
| Theorem | rlmlvec 21148 | The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LVec) | ||
| Theorem | rlmlsm 21149 | Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024.) |
| ⊢ (𝑅 ∈ 𝑉 → (LSSum‘𝑅) = (LSSum‘(ringLMod‘𝑅))) | ||
| Theorem | rlmvneg 21150 | Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| ⊢ (invg‘𝑅) = (invg‘(ringLMod‘𝑅)) | ||
| Theorem | rlmscaf 21151 | Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) | ||
| Theorem | ixpsnbasval 21152* | The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) | ||
Remark: Usually, (left) ideals are defined as a subset of a (unital or non-unital) ring that is a subgroup of the additive group of the ring that "absorbs multiplication from the left by elements of the ring", see Wikipedia https://en.wikipedia.org/wiki/Ideal_(ring_theory) (19.02.2025), or the definition 4 in [BourbakiAlg1] p. 103 and the definition in [Lang] p.86, although a ring is to be considered unital (and commutative!) here, see definition 1 in [BourbakiAlg1] p. 96 resp. the definition in [Lang] p. 83, or definition in [Roman] p. 20. In contrast, the definition of (LIdeal‘𝑅), does not require the subset to be a subgroup of the additive group, as can be seen by islidl 21162. If 𝑅 is a unital ring, however, it can be proven that each ideal in (LIdeal‘𝑅) is a subgroup of the additive group of the ring, see lidlsubg 21170. This is not possible for arbitrary non-unital rings, because the proof uses the existence of the ring unity. | ||
| Syntax | clidl 21153 | Ring left-ideal function. |
| class LIdeal | ||
| Syntax | crsp 21154 | Ring span function. |
| class RSpan | ||
| Definition | df-lidl 21155 | Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. For the usual textbook definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring, see dflidl2rng 21165 and dflidl2 21174. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ LIdeal = (LSubSp ∘ ringLMod) | ||
| Definition | df-rsp 21156 | Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ RSpan = (LSpan ∘ ringLMod) | ||
| Theorem | lidlval 21157 | Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) | ||
| Theorem | rspval 21158 | Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)) | ||
| Theorem | lidlss 21159 | An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐼 = (LIdeal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) | ||
| Theorem | lidlssbas 21160 | The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) | ||
| Theorem | lidlbas 21161 | A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | ||
| Theorem | islidl 21162* | Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) | ||
| Theorem | rnglidlmcl 21163 | A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl 21172. (Contributed by AV, 18-Feb-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | rngridlmcl 21164 | A right ideal (which is a left ideal over the opposite ring) containing the zero element is closed under right-multiplication by elements of the full non-unital ring. (Contributed by AV, 19-Feb-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑌 · 𝑋) ∈ 𝐼) | ||
| Theorem | dflidl2rng 21165* | Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) | ||
| Theorem | isridlrng 21166* | A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | ||
| Theorem | lidl0cl 21167 | An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) | ||
| Theorem | lidlacl 21168 | An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) | ||
| Theorem | lidlnegcl 21169 | An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | ||
| Theorem | lidlsubg 21170 | An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) | ||
| Theorem | lidlsubcl 21171 | An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 − 𝑌) ∈ 𝐼) | ||
| Theorem | lidlmcl 21172 | An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof shortened by AV, 31-Mar-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | lidl1el 21173 | An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) | ||
| Theorem | dflidl2 21174* | Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼))) | ||
| Theorem | lidl0ALT 21175 | Alternate proof for lidl0 21177 not using rnglidl0 21176: Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) | ||
| Theorem | rnglidl0 21176 | Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) | ||
| Theorem | lidl0 21177 | Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof shortened by AV, 18-Apr-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) | ||
| Theorem | lidl1ALT 21178 | Alternate proof for lidl1 21180 not using rnglidl1 21179: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) | ||
| Theorem | rnglidl1 21179 | The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 21180. (Contributed by AV, 19-Feb-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) | ||
| Theorem | lidl1 21180 | Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof shortened by AV, 18-Apr-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) | ||
| Theorem | lidlacs 21181 | The ideal system is an algebraic closure system on the base set. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐼 = (LIdeal‘𝑊) ⇒ ⊢ (𝑊 ∈ Ring → 𝐼 ∈ (ACS‘𝐵)) | ||
| Theorem | rspcl 21182 | The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) | ||
| Theorem | rspssid 21183 | The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (𝐾‘𝐺)) | ||
| Theorem | rsp1 21184 | The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐾‘{ 1 }) = 𝐵) | ||
| Theorem | rsp0 21185 | The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 }) | ||
| Theorem | rspssp 21186 | The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) | ||
| Theorem | elrspsn 21187* | Membership in a principal ideal. Analogous to ellspsn 20946. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) | ||
| Theorem | mrcrsp 21188 | Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐹 = (mrCls‘𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐾 = 𝐹) | ||
| Theorem | lidlnz 21189* | A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃𝑥 ∈ 𝐼 𝑥 ≠ 0 ) | ||
| Theorem | drngnidl 21190 | A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵}) | ||
| Theorem | lidlrsppropd 21191* | The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) | ||
| Theorem | rnglidlmmgm 21192 | The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0 ∈ 𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) | ||
| Theorem | rnglidlmsgrp 21193 | The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0 ∈ 𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp) | ||
| Theorem | rnglidlrng 21194 | A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng) | ||
| Theorem | lidlnsg 21195 | An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅)) | ||
| Syntax | c2idl 21196 | Ring two-sided ideal function. |
| class 2Ideal | ||
| Definition | df-2idl 21197 | Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | ||
| Theorem | 2idlval 21198 | Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐽 = (LIdeal‘𝑂) & ⊢ 𝑇 = (2Ideal‘𝑅) ⇒ ⊢ 𝑇 = (𝐼 ∩ 𝐽) | ||
| Theorem | isridl 21199* | A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
| ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) | ||
| Theorem | 2idlelb 21200 | Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21219. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐽 = (LIdeal‘𝑂) & ⊢ 𝑇 = (2Ideal‘𝑅) ⇒ ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |