| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-aa | Structured version Visualization version GIF version | ||
| Description: Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of {0}) of all polynomials in (Poly‘ℤ), except the zero polynomial 0𝑝. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| df-aa | ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caa 26356 | . 2 class 𝔸 | |
| 2 | vf | . . 3 setvar 𝑓 | |
| 3 | cz 12613 | . . . . 5 class ℤ | |
| 4 | cply 26223 | . . . . 5 class Poly | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (Poly‘ℤ) |
| 6 | c0p 25704 | . . . . 5 class 0𝑝 | |
| 7 | 6 | csn 4626 | . . . 4 class {0𝑝} |
| 8 | 5, 7 | cdif 3948 | . . 3 class ((Poly‘ℤ) ∖ {0𝑝}) |
| 9 | 2 | cv 1539 | . . . . 5 class 𝑓 |
| 10 | 9 | ccnv 5684 | . . . 4 class ◡𝑓 |
| 11 | cc0 11155 | . . . . 5 class 0 | |
| 12 | 11 | csn 4626 | . . . 4 class {0} |
| 13 | 10, 12 | cima 5688 | . . 3 class (◡𝑓 “ {0}) |
| 14 | 2, 8, 13 | ciun 4991 | . 2 class ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) |
| 15 | 1, 14 | wceq 1540 | 1 wff 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elaa 26358 |
| Copyright terms: Public domain | W3C validator |