MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elaa Structured version   Visualization version   GIF version

Theorem elaa 25828
Description: Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
elaa (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ β„‚ ∧ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(π‘“β€˜π΄) = 0))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elaa
StepHypRef Expression
1 df-aa 25827 . . 3 𝔸 = βˆͺ 𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(◑𝑓 β€œ {0})
21eleq2i 2825 . 2 (𝐴 ∈ 𝔸 ↔ 𝐴 ∈ βˆͺ 𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(◑𝑓 β€œ {0}))
3 eliun 5001 . . 3 (𝐴 ∈ βˆͺ 𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(◑𝑓 β€œ {0}) ↔ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})𝐴 ∈ (◑𝑓 β€œ {0}))
4 eldifi 4126 . . . . . 6 (𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝}) β†’ 𝑓 ∈ (Polyβ€˜β„€))
5 plyf 25711 . . . . . 6 (𝑓 ∈ (Polyβ€˜β„€) β†’ 𝑓:β„‚βŸΆβ„‚)
6 ffn 6717 . . . . . 6 (𝑓:β„‚βŸΆβ„‚ β†’ 𝑓 Fn β„‚)
7 fniniseg 7061 . . . . . 6 (𝑓 Fn β„‚ β†’ (𝐴 ∈ (◑𝑓 β€œ {0}) ↔ (𝐴 ∈ β„‚ ∧ (π‘“β€˜π΄) = 0)))
84, 5, 6, 74syl 19 . . . . 5 (𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝}) β†’ (𝐴 ∈ (◑𝑓 β€œ {0}) ↔ (𝐴 ∈ β„‚ ∧ (π‘“β€˜π΄) = 0)))
98rexbiia 3092 . . . 4 (βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})𝐴 ∈ (◑𝑓 β€œ {0}) ↔ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(𝐴 ∈ β„‚ ∧ (π‘“β€˜π΄) = 0))
10 r19.42v 3190 . . . 4 (βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(𝐴 ∈ β„‚ ∧ (π‘“β€˜π΄) = 0) ↔ (𝐴 ∈ β„‚ ∧ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(π‘“β€˜π΄) = 0))
119, 10bitri 274 . . 3 (βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})𝐴 ∈ (◑𝑓 β€œ {0}) ↔ (𝐴 ∈ β„‚ ∧ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(π‘“β€˜π΄) = 0))
123, 11bitri 274 . 2 (𝐴 ∈ βˆͺ 𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(◑𝑓 β€œ {0}) ↔ (𝐴 ∈ β„‚ ∧ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(π‘“β€˜π΄) = 0))
132, 12bitri 274 1 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ β„‚ ∧ βˆƒπ‘“ ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(π‘“β€˜π΄) = 0))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βˆ– cdif 3945  {csn 4628  βˆͺ ciun 4997  β—‘ccnv 5675   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  β„‚cc 11107  0cc0 11109  β„€cz 12557  0𝑝c0p 25185  Polycply 25697  π”Έcaa 25826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-ply 25701  df-aa 25827
This theorem is referenced by:  aacn  25829  elqaalem3  25833  elqaa  25834  iaa  25837  aareccl  25838  aacjcl  25839  aannenlem2  25841  aaliou2  25852  elaa2  44940
  Copyright terms: Public domain W3C validator