| Metamath
Proof Explorer Theorem List (p. 259 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isibl2 25801* | The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘𝐺) ∈ ℝ))) | ||
| Theorem | iblmbf 25802 | An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) | ||
| Theorem | iblitg 25803* | If a function is integrable, then the ∫2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾)))) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → (∫2‘𝐺) ∈ ℝ) | ||
| Theorem | dfitg 25804* | Evaluate the class substitution in df-itg 25658. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) | ||
| Theorem | itgex 25805 | An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 ∈ V | ||
| Theorem | itgeq1f 25806 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1fOLD 25807 | Obsolete version of itgeq1f 25806 as of 1-Sep-2025. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgeq1 25808* | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | nfitg1 25809 | Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 | ||
| Theorem | nfitg 25810* | Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∫𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 | ||
| Theorem | cbvitg 25811* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 | ||
| Theorem | cbvitgv 25812* | Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦 | ||
| Theorem | itgeq2 25813 | Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgresr 25814 | The domain of an integral only matters in its intersection with ℝ. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 = ∫(𝐴 ∩ ℝ)𝐵 d𝑥 | ||
| Theorem | itg0 25815 | The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ∫∅𝐴 d𝑥 = 0 | ||
| Theorem | itgz 25816 | The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ∫𝐴0 d𝑥 = 0 | ||
| Theorem | itgeq2dv 25817* | Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgmpt 25818* | Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) d𝑦) | ||
| Theorem | itgcl 25819* | The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) | ||
| Theorem | itgvallem 25820* | Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (i↑𝐾) = 𝑇 ⇒ ⊢ (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))) | ||
| Theorem | itgvallem3 25821* | Lemma for itgposval 25831 and itgreval 25832. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 0) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) = 0) | ||
| Theorem | ibl0 25822 | The zero function is integrable on any measurable set. (Unlike iblconst 25853, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) | ||
| Theorem | iblcnlem1 25823* | Lemma for iblcnlem 25824. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) | ||
| Theorem | iblcnlem 25824* | Expand out the universal quantifier in isibl2 25801. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) | ||
| Theorem | itgcnlem 25825* | Expand out the sum in dfitg 25804. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) & ⊢ 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) & ⊢ 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) & ⊢ 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅 − 𝑆) + (i · (𝑇 − 𝑈)))) | ||
| Theorem | iblrelem 25826* | Integrability of a real function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) | ||
| Theorem | iblposlem 25827* | Lemma for iblpos 25828. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0) | ||
| Theorem | iblpos 25828* | Integrability of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ))) | ||
| Theorem | iblre 25829* | Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1))) | ||
| Theorem | itgrevallem1 25830* | Lemma for itgposval 25831 and itgreval 25832. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))) | ||
| Theorem | itgposval 25831* | The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) | ||
| Theorem | itgreval 25832* | Decompose the integral of a real function into positive and negative parts. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) | ||
| Theorem | itgrecl 25833* | Real closure of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℝ) | ||
| Theorem | iblcn 25834* | Integrability of a complex function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))) | ||
| Theorem | itgcnval 25835* | Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) | ||
| Theorem | itgre 25836* | Real part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℜ‘∫𝐴𝐵 d𝑥) = ∫𝐴(ℜ‘𝐵) d𝑥) | ||
| Theorem | itgim 25837* | Imaginary part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℑ‘∫𝐴𝐵 d𝑥) = ∫𝐴(ℑ‘𝐵) d𝑥) | ||
| Theorem | iblneg 25838* | The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ 𝐿1) | ||
| Theorem | itgneg 25839* | Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥) | ||
| Theorem | iblss 25840* | A subset of an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | ||
| Theorem | iblss2 25841* | Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | ||
| Theorem | itgitg2 25842* | Transfer an integral using ∫2 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) & ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴))) | ||
| Theorem | i1fibl 25843 | A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1) | ||
| Theorem | itgitg1 25844* | Transfer an integral using ∫1 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹‘𝑥) d𝑥 = (∫1‘𝐹)) | ||
| Theorem | itgle 25845* | Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥) | ||
| Theorem | itgge0 25846* | The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥) | ||
| Theorem | itgss 25847* | Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | itgss2 25848* | Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝐴 ⊆ 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) | ||
| Theorem | itgeqa 25849* | Approximate equality of integrals. If 𝐶(𝑥) = 𝐷(𝑥) for almost all 𝑥, then ∫𝐵𝐶(𝑥) d𝑥 = ∫𝐵𝐷(𝑥) d𝑥 and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)) | ||
| Theorem | itgss3 25850* | Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘(𝐵 ∖ 𝐴)) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)) | ||
| Theorem | itgioo 25851* | Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥) | ||
| Theorem | itgless 25852* | Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) | ||
| Theorem | iblconst 25853 | A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1) | ||
| Theorem | itgconst 25854* | Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴))) | ||
| Theorem | ibladdlem 25855* | Lemma for ibladd 25856. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 = (𝐵 + 𝐶)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ) & ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ) ⇒ ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ) | ||
| Theorem | ibladd 25856* | Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1) | ||
| Theorem | iblsub 25857* | Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝐿1) | ||
| Theorem | itgaddlem1 25858* | Lemma for itgadd 25860. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
| Theorem | itgaddlem2 25859* | Lemma for itgadd 25860. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
| Theorem | itgadd 25860* | Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) | ||
| Theorem | itgsub 25861* | Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝐴(𝐵 − 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥)) | ||
| Theorem | itgfsum 25862* | Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) | ||
| Theorem | iblabslem 25863* | Lemma for iblabs 25864. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐺 ∈ MblFn ∧ (∫2‘𝐺) ∈ ℝ)) | ||
| Theorem | iblabs 25864* | The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1) | ||
| Theorem | iblabsr 25865* | A measurable function is integrable iff its absolute value is integrable. (See iblabs 25864 for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | ||
| Theorem | iblmulc2 25866* | Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) | ||
| Theorem | itgmulc2lem1 25867* | Lemma for itgmulc2 25869: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
| Theorem | itgmulc2lem2 25868* | Lemma for itgmulc2 25869: real case. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
| Theorem | itgmulc2 25869* | Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) | ||
| Theorem | itgabs 25870* | The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) | ||
| Theorem | itgsplit 25871* | The ∫ integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫𝑈𝐶 d𝑥 = (∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥)) | ||
| Theorem | itgspliticc 25872* | The ∫ integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐶)) → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥)) | ||
| Theorem | itgsplitioo 25873* | The ∫ integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)) | ||
| Theorem | bddmulibl 25874* | A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → (𝐹 ∘f · 𝐺) ∈ 𝐿1) | ||
| Theorem | bddibl 25875* | A bounded function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1) | ||
| Theorem | cniccibl 25876 | A continuous function on a closed bounded interval is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1) | ||
| Theorem | bddiblnc 25877* | Choice-free proof of bddibl 25875. (Contributed by Brendan Leahy, 2-Nov-2017.) (Revised by Brendan Leahy, 6-Nov-2017.) |
| ⊢ ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1) | ||
| Theorem | cnicciblnc 25878 | Choice-free proof of cniccibl 25876. (Contributed by Brendan Leahy, 2-Nov-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1) | ||
| Theorem | itggt0 25879* | The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ (𝜑 → 0 < (vol‘𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) | ||
| Theorem | itgcn 25880* | Transfer itg2cn 25798 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((𝑢 ⊆ 𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)) | ||
| Syntax | cdit 25881 | Extend class notation with the directed integral. |
| class ⨜[𝐴 → 𝐵]𝐶 d𝑥 | ||
| Definition | df-ditg 25882 | Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The 𝐴 and 𝐵 here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +∞, -∞ for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | ||
| Theorem | ditgeq1 25883* | Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝐴 = 𝐵 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = ⨜[𝐵 → 𝐶]𝐷 d𝑥) | ||
| Theorem | ditgeq2 25884* | Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝐴 = 𝐵 → ⨜[𝐶 → 𝐴]𝐷 d𝑥 = ⨜[𝐶 → 𝐵]𝐷 d𝑥) | ||
| Theorem | ditgeq3 25885* | Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 25891 first and use the equality theorems for df-itg 25658.) (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
| Theorem | ditgeq3dv 25886* | Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
| Theorem | ditgex 25887 | A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ V | ||
| Theorem | ditg0 25888* | Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ⨜[𝐴 → 𝐴]𝐵 d𝑥 = 0 | ||
| Theorem | cbvditg 25889* | Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 ⇒ ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 | ||
| Theorem | cbvditgv 25890* | Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦 | ||
| Theorem | ditgpos 25891* | Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) | ||
| Theorem | ditgneg 25892* | Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) | ||
| Theorem | ditgcl 25893* | Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 ∈ ℂ) | ||
| Theorem | ditgswap 25894* | Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) | ||
| Theorem | ditgsplitlem 25895* | Lemma for ditgsplit 25896. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐶 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1) & ⊢ ((𝜓 ∧ 𝜃) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = (⨜[𝐴 → 𝐵]𝐷 d𝑥 + ⨜[𝐵 → 𝐶]𝐷 d𝑥)) | ||
| Theorem | ditgsplit 25896* | This theorem is the raison d'être for the directed integral, because unlike itgspliticc 25872, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐶 ∈ (𝑋[,]𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐶]𝐷 d𝑥 = (⨜[𝐴 → 𝐵]𝐷 d𝑥 + ⨜[𝐵 → 𝐶]𝐷 d𝑥)) | ||
| Syntax | climc 25897 | The limit operator. |
| class limℂ | ||
| Syntax | cdv 25898 | The derivative operator. |
| class D | ||
| Syntax | cdvn 25899 | The 𝑛-th derivative operator. |
| class D𝑛 | ||
| Syntax | ccpn 25900 | The set of 𝑛-times continuously differentiable functions. |
| class 𝓑C𝑛 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |