![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-abss | Structured version Visualization version GIF version |
Description: Define the surreal absolute value function. See abssval 28183 for its value and absscl 28184 for its closure. (Contributed by Scott Fenton, 16-Apr-2025.) |
Ref | Expression |
---|---|
df-abss | ⊢ abss = (𝑥 ∈ No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cabss 28181 | . 2 class abss | |
2 | vx | . . 3 setvar 𝑥 | |
3 | csur 27618 | . . 3 class No | |
4 | c0s 27801 | . . . . 5 class 0s | |
5 | 2 | cv 1532 | . . . . 5 class 𝑥 |
6 | csle 27723 | . . . . 5 class ≤s | |
7 | 4, 5, 6 | wbr 5149 | . . . 4 wff 0s ≤s 𝑥 |
8 | cnegs 27978 | . . . . 5 class -us | |
9 | 5, 8 | cfv 6549 | . . . 4 class ( -us ‘𝑥) |
10 | 7, 5, 9 | cif 4530 | . . 3 class if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥)) |
11 | 2, 3, 10 | cmpt 5232 | . 2 class (𝑥 ∈ No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) |
12 | 1, 11 | wceq 1533 | 1 wff abss = (𝑥 ∈ No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: abssval 28183 |
Copyright terms: Public domain | W3C validator |