![]() |
Metamath
Proof Explorer Theorem List (p. 283 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | addsdird 28201 | Distributive law for surreal numbers. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) +s (𝐵 ·s 𝐶))) | ||
Theorem | subsdid 28202 | Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 -s 𝐶)) = ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))) | ||
Theorem | subsdird 28203 | Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) -s (𝐵 ·s 𝐶))) | ||
Theorem | mulnegs1d 28204 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s 𝐵) = ( -us ‘(𝐴 ·s 𝐵))) | ||
Theorem | mulnegs2d 28205 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) | ||
Theorem | mul2negsd 28206 | Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s ( -us ‘𝐵)) = (𝐴 ·s 𝐵)) | ||
Theorem | mulsasslem1 28207* | Lemma for mulsass 28210. Expand the left hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})))) | ||
Theorem | mulsasslem2 28208* | Lemma for mulsass 28210. Expand the right hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))) | ||
Theorem | mulsasslem3 28209* | Lemma for mulsass 28210. Demonstrate the central equality. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ 𝑃 ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) & ⊢ 𝑄 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) & ⊢ 𝑅 ⊆ (( L ‘𝐶) ∪ ( R ‘𝐶)) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝐶) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝐵) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝐵 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝐴 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))((𝑥𝑂 ·s 𝐵) ·s 𝐶) = (𝑥𝑂 ·s (𝐵 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝐴 ·s 𝑦𝑂) ·s 𝐶) = (𝐴 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝐵) ·s 𝑧𝑂) = (𝐴 ·s (𝐵 ·s 𝑧𝑂))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = ((((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧)) -s ((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝑧)) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = (((𝑥 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))) -s (𝑥 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))))) | ||
Theorem | mulsass 28210 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28183, addsdi 28199, mulsgt0 28188, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
Theorem | mulsassd 28211 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
Theorem | muls4d 28212 | Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s (𝐶 ·s 𝐷)) = ((𝐴 ·s 𝐶) ·s (𝐵 ·s 𝐷))) | ||
Theorem | mulsunif2lem 28213* | Lemma for mulsunif2 28214. State the theorem with extra disjoint variable conditions. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
Theorem | mulsunif2 28214* | Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
Theorem | sltmul2 28215 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))) | ||
Theorem | sltmul2d 28216 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐴) <s (𝐶 ·s 𝐵))) | ||
Theorem | sltmul1d 28217 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐶))) | ||
Theorem | slemul2d 28218 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 ·s 𝐴) ≤s (𝐶 ·s 𝐵))) | ||
Theorem | slemul1d 28219 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) | ||
Theorem | sltmulneg1d 28220 | Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 0s ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) | ||
Theorem | sltmulneg2d 28221 | Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 0s ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐵) <s (𝐶 ·s 𝐴))) | ||
Theorem | mulscan2dlem 28222 | Lemma for mulscan2d 28223. Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulscan2d 28223 | Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulscan1d 28224 | Cancellation of surreal multiplication when the left term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) = (𝐶 ·s 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | muls12d 28225 | Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = (𝐵 ·s (𝐴 ·s 𝐶))) | ||
Theorem | slemul1ad 28226 | Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐶) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) | ||
Theorem | sltmul12ad 28227 | Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐴) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 0s ≤s 𝐶) & ⊢ (𝜑 → 𝐶 <s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷)) | ||
Theorem | divsmo 28228* | Uniqueness of surreal inversion. Given a non-zero surreal 𝐴, there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃*𝑥 ∈ No (𝐴 ·s 𝑥) = 𝐵) | ||
Theorem | muls0ord 28229 | If a surreal product is zero, one of its factors must be zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s ∨ 𝐵 = 0s ))) | ||
Theorem | mulsne0bd 28230 | The product of two non-zero surreals is non-zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ≠ 0s ↔ (𝐴 ≠ 0s ∧ 𝐵 ≠ 0s ))) | ||
Syntax | cdivs 28231 | Declare the syntax for surreal division. |
class /su | ||
Definition | df-divs 28232* | Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) | ||
Theorem | divsval 28233* | The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) | ||
Theorem | norecdiv 28234* | If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | ||
Theorem | noreceuw 28235* | If a surreal has a reciprocal, then it has unique division. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | ||
Theorem | divsmulw 28236* | Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28260, we can eliminate the existence hypothesis (see divsmul 28263). (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divsmulwd 28237* | Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divsclw 28238* | Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) ∧ ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divsclwd 28239* | Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divscan2wd 28240* | A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | ||
Theorem | divscan1wd 28241* | A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s 𝐵) = 𝐴) | ||
Theorem | sltdivmulwd 28242* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐶 ·s 𝐵))) | ||
Theorem | sltdivmul2wd 28243* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 ·s 𝐶))) | ||
Theorem | sltmuldivwd 28244* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | sltmuldiv2wd 28245* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | divsasswd 28246* | An associative law for surreal division. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) | ||
Theorem | divs1 28247 | A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | ||
Theorem | precsexlemcbv 28248* | Lemma for surreal reciprocals. Change some bound variables. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) ⇒ ⊢ 𝐹 = rec((𝑞 ∈ V ↦ ⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd ‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑡)) /su 𝑧𝑅)}))〉), 〈{ 0s }, ∅〉) | ||
Theorem | precsexlem1 28249 | Lemma for surreal reciprocals. Calculate the value of the recursive left function at zero. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐿‘∅) = { 0s } | ||
Theorem | precsexlem2 28250 | Lemma for surreal reciprocals. Calculate the value of the recursive right function at zero. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝑅‘∅) = ∅ | ||
Theorem | precsexlem3 28251* | Lemma for surreal reciprocals. Calculate the value of the recursive function at a successor. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝐹‘suc 𝐼) = 〈((𝐿‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), ((𝑅‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉) | ||
Theorem | precsexlem4 28252* | Lemma for surreal reciprocals. Calculate the value of the recursive left function at a successor. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝐿‘suc 𝐼) = ((𝐿‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))) | ||
Theorem | precsexlem5 28253* | Lemma for surreal reciprocals. Calculate the value of the recursive right function at a successor. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝑅‘suc 𝐼) = ((𝑅‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))) | ||
Theorem | precsexlem6 28254* | Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝐿‘𝐼) ⊆ (𝐿‘𝐽)) | ||
Theorem | precsexlem7 28255* | Lemma for surreal reciprocal. Show that 𝑅 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝑅‘𝐼) ⊆ (𝑅‘𝐽)) | ||
Theorem | precsexlem8 28256* | Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ ω) → ((𝐿‘𝐼) ⊆ No ∧ (𝑅‘𝐼) ⊆ No )) | ||
Theorem | precsexlem9 28257* | Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) | ||
Theorem | precsexlem10 28258* | Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ (𝜑 → ∪ (𝐿 “ ω) <<s ∪ (𝑅 “ ω)) | ||
Theorem | precsexlem11 28259* | Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) & ⊢ 𝑌 = (∪ (𝐿 “ ω) |s ∪ (𝑅 “ ω)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝑌) = 1s ) | ||
Theorem | precsex 28260* | Every positive surreal has a reciprocal. Theorem 10(iv) of [Conway] p. 21. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 0s <s 𝐴) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 1s ) | ||
Theorem | recsex 28261* | A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | ||
Theorem | recsexd 28262* | A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 ≠ 0s ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | ||
Theorem | divsmul 28263 | Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divsmuld 28264 | Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divscl 28265 | Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divscld 28266 | Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divscan2d 28267 | A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | ||
Theorem | divscan1d 28268 | A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s 𝐵) = 𝐴) | ||
Theorem | sltdivmuld 28269 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐶 ·s 𝐵))) | ||
Theorem | sltdivmul2d 28270 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 ·s 𝐶))) | ||
Theorem | sltmuldivd 28271 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | sltmuldiv2d 28272 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | divsassd 28273 | An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) | ||
Theorem | divmuldivsd 28274 | Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → 𝐷 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) | ||
Theorem | divdivs1d 28275 | Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) | ||
Theorem | divsrecd 28276 | Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) | ||
Theorem | divsdird 28277 | Distribution of surreal division over addition. (Contributed by Scott Fenton, 13-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) | ||
Theorem | divscan3d 28278 | A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐵 ·s 𝐴) /su 𝐵) = 𝐴) | ||
Syntax | cabss 28279 | Declare the syntax for surreal absolute value. |
class abss | ||
Definition | df-abss 28280 | Define the surreal absolute value function. See abssval 28281 for its value and absscl 28282 for its closure. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ abss = (𝑥 ∈ No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) | ||
Theorem | abssval 28281 | The value of surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | ||
Theorem | absscl 28282 | Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → (abss‘𝐴) ∈ No ) | ||
Theorem | abssid 28283 | The absolute value of a non-negative surreal is itself. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | ||
Theorem | abs0s 28284 | The absolute value of surreal zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (abss‘ 0s ) = 0s | ||
Theorem | abssnid 28285 | For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | ||
Theorem | absmuls 28286 | Surreal absolute value distributes over multiplication. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss‘𝐴) ·s (abss‘𝐵))) | ||
Theorem | abssge0 28287 | The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) | ||
Theorem | abssor 28288 | The absolute value of a surreal is either that surreal or its negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → ((abss‘𝐴) = 𝐴 ∨ (abss‘𝐴) = ( -us ‘𝐴))) | ||
Theorem | abssneg 28289 | Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) | ||
Theorem | sleabs 28290 | A surreal is less than or equal to its absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) | ||
Theorem | absslt 28291 | Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((abss‘𝐴) <s 𝐵 ↔ (( -us ‘𝐵) <s 𝐴 ∧ 𝐴 <s 𝐵))) | ||
Syntax | cons 28292 | Declare the syntax for surreal ordinals. |
class Ons | ||
Definition | df-ons 28293 | Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from [Conway] p. 27. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | ||
Theorem | elons 28294 | Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) | ||
Theorem | onssno 28295 | The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ Ons ⊆ No | ||
Theorem | onsno 28296 | A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) | ||
Theorem | 0ons 28297 | Surreal zero is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ 0s ∈ Ons | ||
Theorem | 1ons 28298 | Surreal one is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ 1s ∈ Ons | ||
Theorem | elons2 28299* | A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from [Conway] p. 27. (Contributed by Scott Fenton, 19-Mar-2025.) |
⊢ (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅)) | ||
Theorem | elons2d 28300 | The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝑋 = (𝐴 |s ∅)) ⇒ ⊢ (𝜑 → 𝑋 ∈ Ons) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |