![]() |
Metamath
Proof Explorer Theorem List (p. 283 of 482) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30715) |
![]() (30716-32238) |
![]() (32239-48161) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 1n0s 28201 | Surreal one is a non-negative surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ 1s ∈ ℕ0s | ||
Theorem | 1nns 28202 | Surreal one is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ 1s ∈ ℕs | ||
Theorem | peano2nns 28203 | Peano postulate for positive surreal integers. One plus a positive surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ (𝐴 ∈ ℕs → (𝐴 +s 1s ) ∈ ℕs) | ||
Theorem | n0sbday 28204 | A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.) |
⊢ (𝐴 ∈ ℕ0s → ( bday ‘𝐴) ∈ ω) | ||
Theorem | n0ssold 28205 | The non-negative surreal integers are a subset of the old set of ω. (Contributed by Scott Fenton, 18-Apr-2025.) |
⊢ ℕ0s ⊆ ( O ‘ω) | ||
Theorem | nnsrecgt0d 28206 | The reciprocal of a positive surreal integer is positive. (Contributed by Scott Fenton, 19-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 0s <s ( 1s /su 𝐴)) | ||
Theorem | seqn0sfn 28207 | The surreal sequence builder is a function over ℕ0s when started from zero. (Contributed by Scott Fenton, 19-Apr-2025.) |
⊢ (𝜑 → seqs 0s ( + , 𝐹) Fn ℕ0s) | ||
Syntax | creno 28208 | Declare the syntax for the surreal reals. |
class ℝs | ||
Definition | df-reno 28209* | Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ ℝs = {𝑥 ∈ No ∣ (∃𝑛 ∈ ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))} | ||
Theorem | elreno 28210* | Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ (𝐴 ∈ ℝs ↔ (𝐴 ∈ No ∧ (∃𝑛 ∈ ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})))) | ||
Theorem | recut 28211* | The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ (𝐴 ∈ No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) | ||
Theorem | 0reno 28212 | Surreal zero is a surreal real. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ 0s ∈ ℝs | ||
Theorem | renegscl 28213 | The surreal reals are closed under negation. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ (𝐴 ∈ ℝs → ( -us ‘𝐴) ∈ ℝs) | ||
Theorem | readdscl 28214 | The surreal reals are closed under addition. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ ((𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs) → (𝐴 +s 𝐵) ∈ ℝs) | ||
Theorem | remulscllem1 28215* | Lemma for remulscl 28217. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (∃𝑝 ∈ ℕs ∃𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))) | ||
Theorem | remulscllem2 28216* | Lemma for remulscl 28217. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ((𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs) ∧ ((( -us ‘𝑁) <s 𝐴 ∧ 𝐴 <s 𝑁) ∧ (( -us ‘𝑀) <s 𝐵 ∧ 𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us ‘𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)) | ||
Theorem | remulscl 28217 | The surreal reals are closed under multiplication. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs) → (𝐴 ·s 𝐵) ∈ ℝs) | ||
This part develops elementary geometry based on Tarski's axioms, following [Schwabhauser]. Tarski's geometry is a first-order theory with one sort, the "points". It has two primitive notions, the ternary predicate of "betweenness" and the quaternary predicate of "congruence". To adapt this theory to the framework of set.mm, and to be able to talk of *a* Tarski structure as a space satisfying the given axioms, we use the following definition, stated informally: A Tarski structure 𝑓 is a set (of points) (Base‘𝑓) together with functions (Itv‘𝑓) and (dist‘𝑓) on ((Base‘𝑓) × (Base‘𝑓)) satisfying certain axioms (given in Definitions df-trkg 28244 et sequentes). This allows to treat a Tarski structure as a special kind of extensible structure (see df-struct 17107). The translation to and from Tarski's treatment is as follows (given, again, informally). Suppose that one is given an extensible structure 𝑓. One defines a betweenness ternary predicate Btw by positing that, for any 𝑥, 𝑦, 𝑧 ∈ (Base‘𝑓), one has "Btw 𝑥𝑦𝑧 " if and only if 𝑦 ∈ 𝑥(Itv‘𝑓)𝑧, and a congruence quaternary predicate Congr by positing that, for any 𝑥, 𝑦, 𝑧, 𝑡 ∈ (Base‘𝑓), one has "Congr 𝑥𝑦𝑧𝑡 " if and only if 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡. It is easy to check that if 𝑓 satisfies our Tarski axioms, then Btw and Congr satisfy Tarski's Tarski axioms when (Base‘𝑓) is interpreted as the universe of discourse. Conversely, suppose that one is given a set 𝑎, a ternary predicate Btw, and a quaternary predicate Congr. One defines the extensible structure 𝑓 such that (Base‘𝑓) is 𝑎, and (Itv‘𝑓) is the function which associates with each ⟨𝑥, 𝑦⟩ ∈ (𝑎 × 𝑎) the set of points 𝑧 ∈ 𝑎 such that "Btw 𝑥𝑧𝑦", and (dist‘𝑓) is the function which associates with each ⟨𝑥, 𝑦⟩ ∈ (𝑎 × 𝑎) the set of ordered pairs ⟨𝑧, 𝑡⟩ ∈ (𝑎 × 𝑎) such that "Congr 𝑥𝑦𝑧𝑡". It is easy to check that if Btw and Congr satisfy Tarski's Tarski axioms when 𝑎 is interpreted as the universe of discourse, then 𝑓 satisfies our Tarski axioms. We intentionally choose to represent congruence (without loss of generality) as 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 instead of "Congr 𝑥𝑦𝑧𝑡", as it is more convenient. It is always possible to define dist for any particular geometry to produce equal results when conguence is desired, and in many cases there is an obvious interpretation of "distance" between two points that can be useful in other situations. Encoding congruence as an equality of distances makes it easier to use these theorems in cases where there is a preferred distance function. We prove that representing a congruence relationship using a distance in the form 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 causes no loss of generality in tgjustc1 28266 and tgjustc2 28267, which in turn are supported by tgjustf 28264 and tgjustr 28265. A similar representation of congruence (using a "distance" function) is used in Axiom A1 of [Beeson2016] p. 5, which discusses how a large number of formalized proofs were found in Tarskian Geometry using OTTER. Their detailed proofs in Tarski Geometry, along with other information, are available at https://www.michaelbeeson.com/research/FormalTarski/ 28265. Most theorems are in deduction form, as this is a very general, simple, and convenient format to use in Metamath. An assertion in deduction form can be easily converted into an assertion in inference form (removing the antecedents 𝜑 →) by insert a ⊤ → in each hypothesis, using a1i 11, then using mptru 1541 to remove the final ⊤ → prefix. In some cases we represent, without loss of generality, an implication antecedent in [Schwabhauser] as a hypothesis. The implication can be retrieved from the by using simpr 484, the theorem as stated, and ex 412. For descriptions of individual axioms, we refer to the specific definitions below. A particular feature of Tarski's axioms is modularity, so by using various subsets of the set of axioms, we can define the classes of "absolute dimensionless Tarski structures" (df-trkg 28244), of "Euclidean dimensionless Tarski structures" (df-trkge 28242) and of "Tarski structures of dimension no less than N" (df-trkgld 28243). In this system, angles are not a primitive notion, but instead a derived notion (see df-cgra 28599 and iscgra 28600). To maintain its simplicity, in this system congruence between shapes (a finite sequence of points) is the case where corresponding segments between all corresponding points are congruent. This includes triangles (a shape of 3 distinct points). Note that this definition has no direct regard for angles. For more details and rationale, see df-cgrg 28302. The first section is devoted to the definitions of these various structures. The second section ("Tarskian geometry") develops the synthetic treatment of geometry. The remaining sections prove that real Euclidean spaces and complex Hilbert spaces, with intended interpretations, are Euclidean Tarski structures. Most of the work in this part is due to Thierry Arnoux, with earlier work by Mario Carneiro and Scott Fenton. See also the credits in the comment of each statement. | ||
Syntax | cstrkg 28218 | Extends class notation with the class of Tarski geometries. |
class TarskiG | ||
Syntax | cstrkgc 28219 | Extends class notation with the class of geometries fulfilling the congruence axioms. |
class TarskiGC | ||
Syntax | cstrkgb 28220 | Extends class notation with the class of geometries fulfilling the betweenness axioms. |
class TarskiGB | ||
Syntax | cstrkgcb 28221 | Extends class notation with the class of geometries fulfilling the congruence and betweenness axioms. |
class TarskiGCB | ||
Syntax | cstrkgld 28222 | Extends class notation with the relation for geometries fulfilling the lower dimension axioms. |
class DimTarskiG≥ | ||
Syntax | cstrkge 28223 | Extends class notation with the class of geometries fulfilling Euclid's axiom. |
class TarskiGE | ||
Syntax | citv 28224 | Declare the syntax for the Interval (segment) index extractor. |
class Itv | ||
Syntax | clng 28225 | Declare the syntax for the Line function. |
class LineG | ||
Definition | df-itv 28226 | Define the Interval (segment) index extractor for Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) Use its index-independent form itvid 28230 instead. (New usage is discouraged.) |
⊢ Itv = Slot ;16 | ||
Definition | df-lng 28227 | Define the line index extractor for geometries. (Contributed by Thierry Arnoux, 27-Mar-2019.) Use its index-independent form lngid 28231 instead. (New usage is discouraged.) |
⊢ LineG = Slot ;17 | ||
Theorem | itvndx 28228 | Index value of the Interval (segment) slot. Use ndxarg 17156. (Contributed by Thierry Arnoux, 24-Aug-2017.) (New usage is discouraged.) |
⊢ (Itv‘ndx) = ;16 | ||
Theorem | lngndx 28229 | Index value of the "line" slot. Use ndxarg 17156. (Contributed by Thierry Arnoux, 27-Mar-2019.) (New usage is discouraged.) |
⊢ (LineG‘ndx) = ;17 | ||
Theorem | itvid 28230 | Utility theorem: index-independent form of df-itv 28226. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ Itv = Slot (Itv‘ndx) | ||
Theorem | lngid 28231 | Utility theorem: index-independent form of df-lng 28227. (Contributed by Thierry Arnoux, 27-Mar-2019.) |
⊢ LineG = Slot (LineG‘ndx) | ||
Theorem | slotsinbpsd 28232 | The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28668 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) | ||
Theorem | slotslnbpsd 28233 | The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 28668 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) | ||
Theorem | lngndxnitvndx 28234 | The slot for the line is not the slot for the Interval (segment) in an extensible structure. Formerly part of proof for ttgval 28666. (Contributed by AV, 9-Nov-2024.) |
⊢ (LineG‘ndx) ≠ (Itv‘ndx) | ||
Theorem | trkgstr 28235 | Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩} ⇒ ⊢ 𝑊 Struct ⟨1, ;16⟩ | ||
Theorem | trkgbas 28236 | The base set of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩} ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝑈 = (Base‘𝑊)) | ||
Theorem | trkgdist 28237 | The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩} ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | trkgitv 28238 | The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ 𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (Itv‘𝑊)) | ||
Definition | df-trkgc 28239* | Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of [Schwabhauser] p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr 2750, so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} | ||
Definition | df-trkgb 28240* | Define the class of geometries fulfilling the 3 betweenness axioms in Tarski's Axiomatization of Geometry: identity, Axiom A6 of [Schwabhauser] p. 11, axiom of Pasch, Axiom A7 of [Schwabhauser] p. 12, and continuity, Axiom A11 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
⊢ TarskiGB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎 ∈ 𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝∀𝑡 ∈ 𝒫 𝑝(∃𝑎 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝑖𝑦)))} | ||
Definition | df-trkgcb 28241* | Define the class of geometries fulfilling the five segment axiom, Axiom A5 of [Schwabhauser] p. 11, and segment construction axiom, Axiom A4 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} | ||
Definition | df-trkge 28242* | Define the class of geometries fulfilling Euclid's axiom, Axiom A10 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ TarskiGE = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))} | ||
Definition | df-trkgld 28243* | Define the class of geometries fulfilling the lower dimension axiom for dimension 𝑛. For such geometries, there are three non-colinear points that are equidistant from 𝑛 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.) (Revised by Thierry Arnoux, 23-Nov-2019.) |
⊢ DimTarskiG≥ = {⟨𝑔, 𝑛⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | ||
Definition | df-trkg 28244* |
Define the class of Tarski geometries. A Tarski geometry is a set of
points, equipped with a betweenness relation (denoting that a point lies
on a line segment between two other points) and a congruence relation
(denoting equality of line segment lengths).
Here, we are using the following:
Tarski originally had more axioms, but later reduced his list to 11:
So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5). It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained. Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.) |
⊢ TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) | ||
Theorem | istrkgc 28245* | Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦)))) | ||
Theorem | istrkgb 28246* | Property of being a Tarski geometry - betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎 ∈ 𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃∀𝑡 ∈ 𝒫 𝑃(∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝐼𝑦))))) | ||
Theorem | istrkgcb 28247* | Property of being a Tarski geometry - congruence and betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∀𝑐 ∈ 𝑃 ∀𝑣 ∈ 𝑃 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 − 𝑦) = (𝑎 − 𝑏) ∧ (𝑦 − 𝑧) = (𝑏 − 𝑐)) ∧ ((𝑥 − 𝑢) = (𝑎 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑏 − 𝑣)))) → (𝑧 − 𝑢) = (𝑐 − 𝑣)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏))))) | ||
Theorem | istrkge 28248* | Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))) | ||
Theorem | istrkgl 28249* | Building lines from the segment property. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) | ||
Theorem | istrkgld 28250* | Property of fulfilling the lower dimension 𝑁 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝐺DimTarskiG≥𝑁 ↔ ∃𝑓(𝑓:(1..^𝑁)–1-1→𝑃 ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) − 𝑥) = ((𝑓‘𝑗) − 𝑥) ∧ ((𝑓‘1) − 𝑦) = ((𝑓‘𝑗) − 𝑦) ∧ ((𝑓‘1) − 𝑧) = ((𝑓‘𝑗) − 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
Theorem | istrkg2ld 28251* | Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) | ||
Theorem | istrkg3ld 28252* | Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (𝑢 ≠ 𝑣 ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (((𝑢 − 𝑥) = (𝑣 − 𝑥) ∧ (𝑢 − 𝑦) = (𝑣 − 𝑦) ∧ (𝑢 − 𝑧) = (𝑣 − 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
Theorem | axtgcgrrflx 28253 | Axiom of reflexivity of congruence, Axiom A1 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑌 − 𝑋)) | ||
Theorem | axtgcgrid 28254 | Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑍 − 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | axtgsegcon 28255* | Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐵, one can construct a line segment congruent to it, starting at any point 𝑌 and going in the direction of any ray containing 𝑌. The ray is determined by the point 𝑌 and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵))) | ||
Theorem | axtg5seg 28256 | Five segments axiom, Axiom A5 of [Schwabhauser] p. 11. Take two triangles 𝑋𝑍𝑈 and 𝐴𝐶𝑉, a point 𝑌 on 𝑋𝑍, and a point 𝐵 on 𝐴𝐶. If all corresponding line segments except for 𝑍𝑈 and 𝐶𝑉 are congruent ( i.e., 𝑋𝑌 ∼ 𝐴𝐵, 𝑌𝑍 ∼ 𝐵𝐶, 𝑋𝑈 ∼ 𝐴𝑉, and 𝑌𝑈 ∼ 𝐵𝑉), then 𝑍𝑈 and 𝐶𝑉 are also congruent. As noted in Axiom 5 of [Tarski1999] p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝐴 − 𝐵)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝑋 − 𝑈) = (𝐴 − 𝑉)) & ⊢ (𝜑 → (𝑌 − 𝑈) = (𝐵 − 𝑉)) ⇒ ⊢ (𝜑 → (𝑍 − 𝑈) = (𝐶 − 𝑉)) | ||
Theorem | axtgbtwnid 28257 | Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | axtgpasch 28258* | Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle 𝑋𝑌𝑍, point 𝑈 in segment 𝑋𝑍, and point 𝑉 in segment 𝑌𝑍, there exists a point 𝑎 on both the segment 𝑈𝑌 and the segment 𝑉𝑋. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ (𝑋𝐼𝑍)) & ⊢ (𝜑 → 𝑉 ∈ (𝑌𝐼𝑍)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 (𝑎 ∈ (𝑈𝐼𝑌) ∧ 𝑎 ∈ (𝑉𝐼𝑋))) | ||
Theorem | axtgcont1 28259* | Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. This axiom (scheme) asserts that any two sets 𝑆 and 𝑇 (of points) such that the elements of 𝑆 precede the elements of 𝑇 with respect to some point 𝑎 (that is, 𝑥 is between 𝑎 and 𝑦 whenever 𝑥 is in 𝑋 and 𝑦 is in 𝑌) are separated by some point 𝑏; this is explained in Axiom 11 of [Tarski1999] p. 185. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑆 ⊆ 𝑃) & ⊢ (𝜑 → 𝑇 ⊆ 𝑃) ⇒ ⊢ (𝜑 → (∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦))) | ||
Theorem | axtgcont 28260* | Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 28259. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑆 ⊆ 𝑃) & ⊢ (𝜑 → 𝑇 ⊆ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑢 ∈ (𝐴𝐼𝑣)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦)) | ||
Theorem | axtglowdim2 28261* | Lower dimension axiom for dimension 2, Axiom A8 of [Schwabhauser] p. 13. There exist 3 non-colinear points. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) | ||
Theorem | axtgupdim2 28262 | Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points 𝑋, 𝑌 and 𝑍 equidistant to two given two points 𝑈 and 𝑉 must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑈 − 𝑋) = (𝑉 − 𝑋)) & ⊢ (𝜑 → (𝑈 − 𝑌) = (𝑉 − 𝑌)) & ⊢ (𝜑 → (𝑈 − 𝑍) = (𝑉 − 𝑍)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥3) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) | ||
Theorem | axtgeucl 28263* | Euclid's Axiom. Axiom A10 of [Schwabhauser] p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiGE) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ (𝑋𝐼𝑉)) & ⊢ (𝜑 → 𝑈 ∈ (𝑌𝐼𝑍)) & ⊢ (𝜑 → 𝑋 ≠ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))) | ||
Theorem | tgjustf 28264* | Given any function 𝐹, equality of the image by 𝐹 is an equivalence relation. (Contributed by Thierry Arnoux, 25-Jan-2023.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑟(𝑟 Er 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑟𝑦 ↔ (𝐹‘𝑥) = (𝐹‘𝑦)))) | ||
Theorem | tgjustr 28265* | Given any equivalence relation 𝑅, one can define a function 𝑓 such that all elements of an equivalence classe of 𝑅 have the same image by 𝑓. (Contributed by Thierry Arnoux, 25-Jan-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝑓‘𝑥) = (𝑓‘𝑦)))) | ||
Theorem | tgjustc1 28266* | A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) ⇒ ⊢ ∃𝑟(𝑟 Er (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (⟨𝑤, 𝑥⟩𝑟⟨𝑦, 𝑧⟩ ↔ (𝑤 − 𝑥) = (𝑦 − 𝑧))) | ||
Theorem | tgjustc2 28267* | A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝑅 Er (𝑃 × 𝑃) ⇒ ⊢ ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (⟨𝑤, 𝑥⟩𝑅⟨𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) | ||
Theorem | tgcgrcomimp 28268 | Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐶))) | ||
Theorem | tgcgrcomr 28269 | Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐶)) | ||
Theorem | tgcgrcoml 28270 | Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐶 − 𝐷)) | ||
Theorem | tgcgrcomlr 28271 | Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) | ||
Theorem | tgcgreqb 28272 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
Theorem | tgcgreq 28273 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | tgcgrneq 28274 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | tgcgrtriv 28275 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − 𝐴) = (𝐵 − 𝐵)) | ||
Theorem | tgcgrextend 28276 | Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) | ||
Theorem | tgsegconeq 28277 | Two points that satisfy the conclusion of axtgsegcon 28255 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ≠ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐸 = 𝐹) | ||
Theorem | tgbtwntriv2 28278 | Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐵)) | ||
Theorem | tgbtwncom 28279 | Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) | ||
Theorem | tgbtwncomb 28280 | Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ↔ 𝐵 ∈ (𝐶𝐼𝐴))) | ||
Theorem | tgbtwnne 28281 | Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | tgbtwntriv1 28282 | Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐴𝐼𝐵)) | ||
Theorem | tgbtwnswapid 28283 | If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | tgbtwnintr 28284 | Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐷)) & ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | ||
Theorem | tgbtwnexch3 28285 | Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | ||
Theorem | tgbtwnouttr2 28286 | Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgbtwnexch2 28287 | Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgbtwnouttr 28288 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgbtwnexch 28289 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | ||
Theorem | tgtrisegint 28290* | A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐶)) & ⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝑃 (𝑞 ∈ (𝐹𝐼𝐶) ∧ 𝑞 ∈ (𝐵𝐼𝐸))) | ||
Theorem | tglowdim1 28291* | Lower dimension axiom for one dimension. In dimension at least 1, there are at least two distinct points. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) to avoid a new definition, but a different convention could be chosen. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑥 ≠ 𝑦) | ||
Theorem | tglowdim1i 28292* | Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝑃 𝑋 ≠ 𝑦) | ||
Theorem | tgldimor 28293 | Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
⊢ 𝑃 = (𝐸‘𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) | ||
Theorem | tgldim0eq 28294 | In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
⊢ 𝑃 = (𝐸‘𝐹) & ⊢ (𝜑 → (♯‘𝑃) = 1) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | tgldim0itv 28295 | In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (♯‘𝑃) = 1) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) | ||
Theorem | tgldim0cgr 28296 | In dimension zero, any two pairs of points are congruent. (Contributed by Thierry Arnoux, 12-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (♯‘𝑃) = 1) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | ||
Theorem | tgbtwndiff 28297* | There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) | ||
Theorem | tgdim01 28298 | In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) | ||
Theorem | tgifscgr 28299 | Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐾, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐾. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐾 ∈ 𝑃) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐹 ∈ (𝐸𝐼𝐾)) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐸 − 𝐾)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐹 − 𝐾)) & ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐸 − 𝐻)) & ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐾 − 𝐻)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐹 − 𝐻)) | ||
Theorem | tgcgrsub 28300 | Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |