HomeHome Metamath Proof Explorer
Theorem List (p. 283 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 28201-28300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremom2noseqlt2 28201* The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))       ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ (𝐺𝐴) <s (𝐺𝐵)))
 
Theoremom2noseqf1o 28202* 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))       (𝜑𝐺:ω–1-1-onto𝑍)
 
Theoremom2noseqiso 28203* 𝐺 is an isomorphism from the finite ordinals to a surreal sequence. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))       (𝜑𝐺 Isom E , <s (ω, 𝑍))
 
Theoremom2noseqoi 28204* An alternative definition of 𝐺 in terms of df-oi 9470. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))       (𝜑𝐺 = OrdIso( <s , 𝑍))
 
Theoremom2noseqrdg 28205* A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))       ((𝜑𝐵 ∈ ω) → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
 
Theoremnoseqrdglem 28206* A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))       ((𝜑𝐵𝑍) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
 
Theoremnoseqrdgfn 28207* The recursive definition generator on surreal sequences is a function. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))    &   (𝜑𝑆 = ran 𝑅)       (𝜑𝑆 Fn 𝑍)
 
Theoremnoseqrdg0 28208* Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))    &   (𝜑𝑆 = ran 𝑅)       (𝜑 → (𝑆𝐶) = 𝐴)
 
Theoremnoseqrdgsuc 28209* Successor value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 19-Apr-2025.)
(𝜑𝐶 No )    &   (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))    &   (𝜑𝑆 = ran 𝑅)       ((𝜑𝐵𝑍) → (𝑆‘(𝐵 +s 1s )) = (𝐵𝐹(𝑆𝐵)))
 
Theoremseqsfn 28210 The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.)
(𝜑𝑀 No )    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))       (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍)
 
Theoremseqs1 28211 The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025.)
(𝜑𝑀 No )       (𝜑 → (seqs𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
 
Theoremseqsp1 28212 The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.)
(𝜑𝑀 No )    &   (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω))    &   (𝜑𝑁𝑍)       (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s ))))
 
15.6.3  Natural numbers
 
Syntaxcnn0s 28213 Declare the syntax for surreal non-negative integers.
class 0s
 
Syntaxcnns 28214 Declare the syntax for surreal positive integers.
class s
 
Definitiondf-n0s 28215 Define the set of non-negative surreal integers. This set behaves similarly to ω and 0, but it is a set of surreal numbers. Like those two sets, it satisfies the Peano axioms and is closed under (surreal) addition and multiplication. Compare df-nn 12194. (Contributed by Scott Fenton, 17-Mar-2025.)
0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω)
 
Definitiondf-nns 28216 Define the set of positive surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
s = (ℕ0s ∖ { 0s })
 
Theoremn0sex 28217 The set of all non-negative surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025.)
0s ∈ V
 
Theoremnnsex 28218 The set of all positive surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025.)
s ∈ V
 
Theorempeano5n0s 28219* Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
(( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
 
Theoremn0ssno 28220 The non-negative surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-Mar-2025.)
0s No
 
Theoremnnssn0s 28221 The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
s ⊆ ℕ0s
 
Theoremnnssno 28222 The positive surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-Mar-2025.)
s No
 
Theoremn0sno 28223 A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕ0s𝐴 No )
 
Theoremnnsno 28224 A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕs𝐴 No )
 
Theoremn0snod 28225 A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝜑𝐴 ∈ ℕ0s)       (𝜑𝐴 No )
 
Theoremnnsnod 28226 A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝜑𝐴 ∈ ℕs)       (𝜑𝐴 No )
 
Theoremnnn0s 28227 A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℕs𝐴 ∈ ℕ0s)
 
Theoremnnn0sd 28228 A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℕs)       (𝜑𝐴 ∈ ℕ0s)
 
Theorem0n0s 28229 Peano postulate: 0s is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.)
0s ∈ ℕ0s
 
Theorempeano2n0s 28230 Peano postulate: the successor of a non-negative surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.)
(𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕ0s)
 
Theoremdfn0s2 28231* Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
0s = {𝑥 ∣ ( 0s𝑥 ∧ ∀𝑦𝑥 (𝑦 +s 1s ) ∈ 𝑥)}
 
Theoremn0sind 28232* Principle of Mathematical Induction (inference schema). Compare nnind 12211 and finds 7875. (Contributed by Scott Fenton, 17-Mar-2025.)
(𝑥 = 0s → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0s → (𝜒𝜃))       (𝐴 ∈ ℕ0s𝜏)
 
Theoremn0scut 28233 A cut form for non-negative surreal integers. (Contributed by Scott Fenton, 2-Apr-2025.)
(𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
 
Theoremn0scut2 28234 A cut form for the successor of a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝐴 ∈ ℕ0s → (𝐴 +s 1s ) = ({𝐴} |s ∅))
 
Theoremn0ons 28235 A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.)
(𝐴 ∈ ℕ0s𝐴 ∈ Ons)
 
Theoremnnne0s 28236 A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕs𝐴 ≠ 0s )
 
Theoremn0sge0 28237 A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
 
Theoremnnsgt0 28238 A positive integer is greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕs → 0s <s 𝐴)
 
Theoremelnns 28239 Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
 
Theoremelnns2 28240 A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
 
Theoremn0s0suc 28241* A non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-Jul-2025.)
(𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
 
Theoremnnsge1 28242 A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.)
(𝑁 ∈ ℕs → 1s ≤s 𝑁)
 
Theoremn0addscl 28243 The non-negative surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.)
((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s)
 
Theoremn0mulscl 28244 The non-negative surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)
 
Theoremnnaddscl 28245 The positive surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.)
((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 +s 𝐵) ∈ ℕs)
 
Theoremnnmulscl 28246 The positive surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs)
 
Theorem1n0s 28247 Surreal one is a non-negative surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.)
1s ∈ ℕ0s
 
Theorem1nns 28248 Surreal one is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.)
1s ∈ ℕs
 
Theorempeano2nns 28249 Peano postulate for positive surreal integers. One plus a positive surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℕs → (𝐴 +s 1s ) ∈ ℕs)
 
Theoremnnsrecgt0d 28250 The reciprocal of a positive surreal integer is positive. (Contributed by Scott Fenton, 19-Apr-2025.)
(𝜑𝐴 ∈ ℕs)       (𝜑 → 0s <s ( 1s /su 𝐴))
 
Theoremn0sbday 28251 A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.)
(𝐴 ∈ ℕ0s → ( bday 𝐴) ∈ ω)
 
Theoremn0ssold 28252 The non-negative surreal integers are a subset of the old set of ω. (Contributed by Scott Fenton, 18-Apr-2025.)
0s ⊆ ( O ‘ω)
 
Theoremn0sfincut 28253 The simplest number greater than a finite set of non-negative surreal integers is a non-negative surreal integer. (Contributed by Scott Fenton, 5-Nov-2025.)
((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s)
 
Theoremonsfi 28254 A surreal ordinal with a finite birthday is a non-negative surreal integer. (Contributed by Scott Fenton, 4-Nov-2025.)
((𝐴 ∈ Ons ∧ ( bday 𝐴) ∈ ω) → 𝐴 ∈ ℕ0s)
 
Theoremonltn0s 28255 A surreal ordinal that is less than a non-negative integer is a non-negative integer. (Contributed by Scott Fenton, 7-Nov-2025.)
((𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵) → 𝐴 ∈ ℕ0s)
 
Theoremn0cutlt 28256* A non-negative surreal integer is the simplest number greater than all previous non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝐴 ∈ ℕ0s𝐴 = ({𝑥 ∈ ℕ0s𝑥 <s 𝐴} |s ∅))
 
Theoremseqn0sfn 28257 The surreal sequence builder is a function over 0s when started from zero. (Contributed by Scott Fenton, 19-Apr-2025.)
(𝜑 → seqs 0s ( + , 𝐹) Fn ℕ0s)
 
Theoremeln0s 28258 A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs𝐴 = 0s ))
 
Theoremn0s0m1 28259 Every non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s))
 
Theoremn0subs 28260 Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.)
((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
 
Theoremn0subs2 28261 Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025.)
((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs))
 
Theoremn0sltp1le 28262 Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.)
((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))
 
Theoremn0sleltp1 28263 Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.)
((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁𝑀 <s (𝑁 +s 1s )))
 
Theoremn0slem1lt 28264 Non-negative surreal ordering relation. (Contributed by Scott Fenton, 8-Nov-2025.)
((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑀 -s 1s ) <s 𝑁))
 
Theorembdayn0p1 28265 The birthday of 𝐴 +s 1s is the successor of the birthday of 𝐴 when 𝐴 is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))
 
Theorembdayn0sf1o 28266 The birthday function restricted to the non-negative surreal integers is a bijection with the finite ordinals. (Contributed by Scott Fenton, 7-Nov-2025.)
( bday ↾ ℕ0s):ℕ0s1-1-onto→ω
 
Theoremn0p1nns 28267 One plus a non-negative surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs)
 
Theoremdfnns2 28268 Alternate definition of the positive surreal integers. Compare df-nn 12194. (Contributed by Scott Fenton, 6-Aug-2025.)
s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
 
Theoremnnsind 28269* Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025.)
(𝑥 = 1s → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 +s 1s ) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕs → (𝜒𝜃))       (𝐴 ∈ ℕs𝜏)
 
Theoremnn1m1nns 28270 Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025.)
(𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs))
 
Theoremnnm1n0s 28271 A positive surreal integer minus one is a non-negative surreal integer. (Contributed by Scott Fenton, 8-Nov-2025.)
(𝑁 ∈ ℕs → (𝑁 -s 1s ) ∈ ℕ0s)
 
Theoremeucliddivs 28272* Euclid's division lemma for surreal numbers. (Contributed by Scott Fenton, 8-Nov-2025.)
((𝐴 ∈ ℕ0s𝐵 ∈ ℕs) → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))
 
15.6.4  Integers
 
Syntaxczs 28273 Declare the syntax for surreal integers.
class s
 
Definitiondf-zs 28274 Define the surreal integers. Compare dfz2 12555. (Contributed by Scott Fenton, 17-May-2025.)
s = ( -s “ (ℕs × ℕs))
 
Theoremzsex 28275 The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025.)
s ∈ V
 
Theoremzssno 28276 The surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-May-2025.)
s No
 
Theoremzno 28277 A surreal integer is a surreal. (Contributed by Scott Fenton, 17-May-2025.)
(𝐴 ∈ ℤs𝐴 No )
 
Theoremznod 28278 A surreal integer is a surreal. Deduction form. (Contributed by Scott Fenton, 17-May-2025.)
(𝜑𝐴 ∈ ℤs)       (𝜑𝐴 No )
 
Theoremelzs 28279* Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.)
(𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
 
Theoremnnzsubs 28280 The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 -s 𝐵) ∈ ℤs)
 
Theoremnnzs 28281 A positive surreal integer is a surreal integer. (Contributed by Scott Fenton, 17-May-2025.)
(𝐴 ∈ ℕs𝐴 ∈ ℤs)
 
Theoremnnzsd 28282 A positive surreal integer is a surreal integer. Deduction form. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℕs)       (𝜑𝐴 ∈ ℤs)
 
Theorem0zs 28283 Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
0s ∈ ℤs
 
Theoremn0zs 28284 A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℕ0s𝐴 ∈ ℤs)
 
Theoremn0zsd 28285 A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℕ0s)       (𝜑𝐴 ∈ ℤs)
 
Theorem1zs 28286 One is a surreal integer. (Contributed by Scott Fenton, 24-Jul-2025.)
1s ∈ ℤs
 
Theoremznegscl 28287 The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℤs → ( -us𝐴) ∈ ℤs)
 
Theoremznegscld 28288 The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℤs)       (𝜑 → ( -us𝐴) ∈ ℤs)
 
Theoremzaddscl 28289 The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝐴 ∈ ℤs𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs)
 
Theoremzaddscld 28290 The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝐵 ∈ ℤs)       (𝜑 → (𝐴 +s 𝐵) ∈ ℤs)
 
Theoremzsubscld 28291 The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝐵 ∈ ℤs)       (𝜑 → (𝐴 -s 𝐵) ∈ ℤs)
 
Theoremzmulscld 28292 The surreal integers are closed under multiplication. (Contributed by Scott Fenton, 20-Aug-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝐵 ∈ ℤs)       (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs)
 
Theoremelzn0s 28293 A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
 
Theoremelzs2 28294 A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
 
Theoremeln0zs 28295 Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
 
Theoremelnnzs 28296 Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))
 
Theoremelznns 28297 Surreal integer property expressed in terms of positive integers and non-negative integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s)))
 
Theoremzn0subs 28298 The non-negative difference of surreal integers is a non-negative integer. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝑀 ∈ ℤs𝑁 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
 
Theorempeano5uzs 28299* Peano's inductive postulate for upper surreal integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝑁 ∈ ℤs)    &   (𝜑𝑁𝐴)    &   ((𝜑𝑥𝐴) → (𝑥 +s 1s ) ∈ 𝐴)       (𝜑 → {𝑘 ∈ ℤs𝑁 ≤s 𝑘} ⊆ 𝐴)
 
Theoremuzsind 28300* Induction on the upper surreal integers that start at 𝑀. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 +s 1s ) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤs𝜓)    &   ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → 𝜏)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >