![]() |
Metamath
Proof Explorer Theorem List (p. 283 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mulnegs2d 28201 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) | ||
Theorem | mul2negsd 28202 | Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s ( -us ‘𝐵)) = (𝐴 ·s 𝐵)) | ||
Theorem | mulsasslem1 28203* | Lemma for mulsass 28206. Expand the left hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})))) | ||
Theorem | mulsasslem2 28204* | Lemma for mulsass 28206. Expand the right hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))) | ||
Theorem | mulsasslem3 28205* | Lemma for mulsass 28206. Demonstrate the central equality. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ 𝑃 ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) & ⊢ 𝑄 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) & ⊢ 𝑅 ⊆ (( L ‘𝐶) ∪ ( R ‘𝐶)) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝐶) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝐵) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝐵 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝐴 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))((𝑥𝑂 ·s 𝐵) ·s 𝐶) = (𝑥𝑂 ·s (𝐵 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝐴 ·s 𝑦𝑂) ·s 𝐶) = (𝐴 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝐵) ·s 𝑧𝑂) = (𝐴 ·s (𝐵 ·s 𝑧𝑂))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = ((((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧)) -s ((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝑧)) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = (((𝑥 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))) -s (𝑥 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))))) | ||
Theorem | mulsass 28206 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28179, addsdi 28195, mulsgt0 28184, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
Theorem | mulsassd 28207 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
Theorem | muls4d 28208 | Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s (𝐶 ·s 𝐷)) = ((𝐴 ·s 𝐶) ·s (𝐵 ·s 𝐷))) | ||
Theorem | mulsunif2lem 28209* | Lemma for mulsunif2 28210. State the theorem with extra disjoint variable conditions. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
Theorem | mulsunif2 28210* | Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
Theorem | sltmul2 28211 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))) | ||
Theorem | sltmul2d 28212 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐴) <s (𝐶 ·s 𝐵))) | ||
Theorem | sltmul1d 28213 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐶))) | ||
Theorem | slemul2d 28214 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 ·s 𝐴) ≤s (𝐶 ·s 𝐵))) | ||
Theorem | slemul1d 28215 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) | ||
Theorem | sltmulneg1d 28216 | Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 0s ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) | ||
Theorem | sltmulneg2d 28217 | Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 0s ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐵) <s (𝐶 ·s 𝐴))) | ||
Theorem | mulscan2dlem 28218 | Lemma for mulscan2d 28219. Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulscan2d 28219 | Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulscan1d 28220 | Cancellation of surreal multiplication when the left term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) = (𝐶 ·s 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | muls12d 28221 | Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = (𝐵 ·s (𝐴 ·s 𝐶))) | ||
Theorem | slemul1ad 28222 | Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐶) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) | ||
Theorem | sltmul12ad 28223 | Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐴) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 0s ≤s 𝐶) & ⊢ (𝜑 → 𝐶 <s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷)) | ||
Theorem | divsmo 28224* | Uniqueness of surreal inversion. Given a non-zero surreal 𝐴, there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃*𝑥 ∈ No (𝐴 ·s 𝑥) = 𝐵) | ||
Theorem | muls0ord 28225 | If a surreal product is zero, one of its factors must be zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s ∨ 𝐵 = 0s ))) | ||
Theorem | mulsne0bd 28226 | The product of two non-zero surreals is non-zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ≠ 0s ↔ (𝐴 ≠ 0s ∧ 𝐵 ≠ 0s ))) | ||
Syntax | cdivs 28227 | Declare the syntax for surreal division. |
class /su | ||
Definition | df-divs 28228* | Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) | ||
Theorem | divsval 28229* | The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) | ||
Theorem | norecdiv 28230* | If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | ||
Theorem | noreceuw 28231* | If a surreal has a reciprocal, then it has unique division. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | ||
Theorem | divsmulw 28232* | Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28256, we can eliminate the existence hypothesis (see divsmul 28259). (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divsmulwd 28233* | Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divsclw 28234* | Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) ∧ ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divsclwd 28235* | Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divscan2wd 28236* | A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | ||
Theorem | divscan1wd 28237* | A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s 𝐵) = 𝐴) | ||
Theorem | sltdivmulwd 28238* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐶 ·s 𝐵))) | ||
Theorem | sltdivmul2wd 28239* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 ·s 𝐶))) | ||
Theorem | sltmuldivwd 28240* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | sltmuldiv2wd 28241* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | divsasswd 28242* | An associative law for surreal division. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) | ||
Theorem | divs1 28243 | A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | ||
Theorem | precsexlemcbv 28244* | Lemma for surreal reciprocals. Change some bound variables. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) ⇒ ⊢ 𝐹 = rec((𝑞 ∈ V ↦ ⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd ‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑡)) /su 𝑧𝑅)}))〉), 〈{ 0s }, ∅〉) | ||
Theorem | precsexlem1 28245 | Lemma for surreal reciprocals. Calculate the value of the recursive left function at zero. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐿‘∅) = { 0s } | ||
Theorem | precsexlem2 28246 | Lemma for surreal reciprocals. Calculate the value of the recursive right function at zero. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝑅‘∅) = ∅ | ||
Theorem | precsexlem3 28247* | Lemma for surreal reciprocals. Calculate the value of the recursive function at a successor. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝐹‘suc 𝐼) = 〈((𝐿‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), ((𝑅‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉) | ||
Theorem | precsexlem4 28248* | Lemma for surreal reciprocals. Calculate the value of the recursive left function at a successor. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝐿‘suc 𝐼) = ((𝐿‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))) | ||
Theorem | precsexlem5 28249* | Lemma for surreal reciprocals. Calculate the value of the recursive right function at a successor. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝑅‘suc 𝐼) = ((𝑅‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))) | ||
Theorem | precsexlem6 28250* | Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝐿‘𝐼) ⊆ (𝐿‘𝐽)) | ||
Theorem | precsexlem7 28251* | Lemma for surreal reciprocal. Show that 𝑅 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝑅‘𝐼) ⊆ (𝑅‘𝐽)) | ||
Theorem | precsexlem8 28252* | Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ ω) → ((𝐿‘𝐼) ⊆ No ∧ (𝑅‘𝐼) ⊆ No )) | ||
Theorem | precsexlem9 28253* | Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) | ||
Theorem | precsexlem10 28254* | Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ (𝜑 → ∪ (𝐿 “ ω) <<s ∪ (𝑅 “ ω)) | ||
Theorem | precsexlem11 28255* | Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) & ⊢ 𝑌 = (∪ (𝐿 “ ω) |s ∪ (𝑅 “ ω)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝑌) = 1s ) | ||
Theorem | precsex 28256* | Every positive surreal has a reciprocal. Theorem 10(iv) of [Conway] p. 21. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 0s <s 𝐴) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 1s ) | ||
Theorem | recsex 28257* | A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | ||
Theorem | recsexd 28258* | A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 ≠ 0s ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | ||
Theorem | divsmul 28259 | Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divsmuld 28260 | Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
Theorem | divscl 28261 | Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divscld 28262 | Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | ||
Theorem | divscan2d 28263 | A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | ||
Theorem | divscan1d 28264 | A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s 𝐵) = 𝐴) | ||
Theorem | sltdivmuld 28265 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐶 ·s 𝐵))) | ||
Theorem | sltdivmul2d 28266 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 ·s 𝐶))) | ||
Theorem | sltmuldivd 28267 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | sltmuldiv2d 28268 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
Theorem | divsassd 28269 | An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) | ||
Theorem | divmuldivsd 28270 | Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → 𝐷 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) | ||
Theorem | divdivs1d 28271 | Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) | ||
Theorem | divsrecd 28272 | Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) | ||
Theorem | divsdird 28273 | Distribution of surreal division over addition. (Contributed by Scott Fenton, 13-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) | ||
Theorem | divscan3d 28274 | A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐵 ·s 𝐴) /su 𝐵) = 𝐴) | ||
Syntax | cabss 28275 | Declare the syntax for surreal absolute value. |
class abss | ||
Definition | df-abss 28276 | Define the surreal absolute value function. See abssval 28277 for its value and absscl 28278 for its closure. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ abss = (𝑥 ∈ No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) | ||
Theorem | abssval 28277 | The value of surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | ||
Theorem | absscl 28278 | Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → (abss‘𝐴) ∈ No ) | ||
Theorem | abssid 28279 | The absolute value of a non-negative surreal is itself. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | ||
Theorem | abs0s 28280 | The absolute value of surreal zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (abss‘ 0s ) = 0s | ||
Theorem | abssnid 28281 | For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | ||
Theorem | absmuls 28282 | Surreal absolute value distributes over multiplication. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss‘𝐴) ·s (abss‘𝐵))) | ||
Theorem | abssge0 28283 | The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) | ||
Theorem | abssor 28284 | The absolute value of a surreal is either that surreal or its negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → ((abss‘𝐴) = 𝐴 ∨ (abss‘𝐴) = ( -us ‘𝐴))) | ||
Theorem | abssneg 28285 | Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) | ||
Theorem | sleabs 28286 | A surreal is less than or equal to its absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) | ||
Theorem | absslt 28287 | Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((abss‘𝐴) <s 𝐵 ↔ (( -us ‘𝐵) <s 𝐴 ∧ 𝐴 <s 𝐵))) | ||
Syntax | cons 28288 | Declare the syntax for surreal ordinals. |
class Ons | ||
Definition | df-ons 28289 | Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from [Conway] p. 27. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | ||
Theorem | elons 28290 | Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) | ||
Theorem | onssno 28291 | The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ Ons ⊆ No | ||
Theorem | onsno 28292 | A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) | ||
Theorem | 0ons 28293 | Surreal zero is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ 0s ∈ Ons | ||
Theorem | 1ons 28294 | Surreal one is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025.) |
⊢ 1s ∈ Ons | ||
Theorem | elons2 28295* | A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from [Conway] p. 27. (Contributed by Scott Fenton, 19-Mar-2025.) |
⊢ (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅)) | ||
Theorem | elons2d 28296 | The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝑋 = (𝐴 |s ∅)) ⇒ ⊢ (𝜑 → 𝑋 ∈ Ons) | ||
Theorem | sltonold 28297* | The class of ordinals less than any surreal is a subset of that surreal's old set. (Contributed by Scott Fenton, 22-Mar-2025.) |
⊢ (𝐴 ∈ No → {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ⊆ ( O ‘( bday ‘𝐴))) | ||
Theorem | sltonex 28298* | The class of ordinals less than any particular surreal is a set. Theorem 14 of [Conway] p. 27. (Contributed by Scott Fenton, 22-Mar-2025.) |
⊢ (𝐴 ∈ No → {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ∈ V) | ||
Theorem | onscutleft 28299 | A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025.) |
⊢ (𝐴 ∈ Ons → 𝐴 = (( L ‘𝐴) |s ∅)) | ||
Theorem | onaddscl 28300 | The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.) |
⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |