| Metamath
Proof Explorer Theorem List (p. 283 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sltonex 28201* | The class of ordinals less than any particular surreal is a set. Theorem 14 of [Conway] p. 27. (Contributed by Scott Fenton, 22-Mar-2025.) |
| ⊢ (𝐴 ∈ No → {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ∈ V) | ||
| Theorem | onscutleft 28202 | A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025.) |
| ⊢ (𝐴 ∈ Ons → 𝐴 = (( L ‘𝐴) |s ∅)) | ||
| Theorem | onaddscl 28203 | The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons) | ||
| Theorem | onmulscl 28204 | The surreal ordinals are closed under multiplication. (Contributed by Scott Fenton, 22-Aug-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons) | ||
| Theorem | peano2ons 28205 | The successor of a surreal ordinal is a surreal ordinal. (Contributed by Scott Fenton, 22-Aug-2025.) |
| ⊢ (𝐴 ∈ Ons → (𝐴 +s 1s ) ∈ Ons) | ||
| Syntax | cseqs 28206 | Extend class notation with the surreal recursive sequence builder. |
| class seqs𝑀( + , 𝐹) | ||
| Definition | df-seqs 28207* | Define a general-purpose sequence builder for surreal numbers. Compare df-seq 14018. Note that in the theorems we develop here, we do not require 𝑀 to be an integer. This is because there are infinite surreal numbers and we may want to start our sequence there. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | ||
| Theorem | seqsex 28208 | Existence of the surreal sequence builder operation. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ seqs𝑀( + , 𝐹) ∈ V | ||
| Theorem | seqseq123d 28209 | Equality deduction for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺)) | ||
| Theorem | nfseqs 28210 | Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) | ||
| Theorem | seqsval 28211* | The value of the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) ⇒ ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅) | ||
| Theorem | noseqex 28212 | The next several theorems develop the concept of a countable sequence of surreals. This set is denoted by 𝑍 here and is the analogue of the upper integer sets for surreal numbers. However, we do not require the starting point to be an integer so we can accommodate infinite numbers. This first theorem establishes that 𝑍 is a set. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) ⇒ ⊢ (𝜑 → 𝑍 ∈ V) | ||
| Theorem | noseq0 28213 | The surreal 𝐴 is a member of the sequence starting at 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑍) | ||
| Theorem | noseqp1 28214* | One plus an element of 𝑍 is an element of 𝑍. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝐵 +s 1s ) ∈ 𝑍) | ||
| Theorem | noseqind 28215* | Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 +s 1s ) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | ||
| Theorem | noseqinds 28216* | Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) | ||
| Theorem | noseqssno 28217 | A surreal sequence is a subset of the surreals. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝑍 ⊆ No ) | ||
| Theorem | noseqno 28218 | An element of a surreal sequence is a surreal. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 ∈ No ) | ||
| Theorem | om2noseq0 28219 | The mapping 𝐺 is a one-to-one mapping from ω onto a countable sequence of surreals that will be used to show the properties of seqs. This theorem shows the value of 𝐺 at ordinal zero. Compare the series of theorems starting at om2uz0i 13963. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐶) | ||
| Theorem | om2noseqsuc 28220* | The value of 𝐺 at a successor. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s )) | ||
| Theorem | om2noseqfo 28221 | Function statement for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺:ω–onto→𝑍) | ||
| Theorem | om2noseqlt 28222* | Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) | ||
| Theorem | om2noseqlt2 28223* | The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) | ||
| Theorem | om2noseqf1o 28224* | 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) | ||
| Theorem | om2noseqiso 28225* | 𝐺 is an isomorphism from the finite ordinals to a surreal sequence. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺 Isom E , <s (ω, 𝑍)) | ||
| Theorem | om2noseqoi 28226* | An alternative definition of 𝐺 in terms of df-oi 9522. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) | ||
| Theorem | om2noseqrdg 28227* | A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ ω) → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
| Theorem | noseqrdglem 28228* | A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
| Theorem | noseqrdgfn 28229* | The recursive definition generator on surreal sequences is a function. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) & ⊢ (𝜑 → 𝑆 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑆 Fn 𝑍) | ||
| Theorem | noseqrdg0 28230* | Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) & ⊢ (𝜑 → 𝑆 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) | ||
| Theorem | noseqrdgsuc 28231* | Successor value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) & ⊢ (𝜑 → 𝑆 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑆‘(𝐵 +s 1s )) = (𝐵𝐹(𝑆‘𝐵))) | ||
| Theorem | seqsfn 28232 | The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ No ) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) ⇒ ⊢ (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍) | ||
| Theorem | seqs1 28233 | The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ No ) ⇒ ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| Theorem | seqsp1 28234 | The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ No ) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) | ||
| Syntax | cnn0s 28235 | Declare the syntax for surreal non-negative integers. |
| class ℕ0s | ||
| Syntax | cnns 28236 | Declare the syntax for surreal positive integers. |
| class ℕs | ||
| Definition | df-n0s 28237 | Define the set of non-negative surreal integers. This set behaves similarly to ω and ℕ0, but it is a set of surreal numbers. Like those two sets, it satisfies the Peano axioms and is closed under (surreal) addition and multiplication. Compare df-nn 12239. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω) | ||
| Definition | df-nns 28238 | Define the set of positive surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs = (ℕ0s ∖ { 0s }) | ||
| Theorem | n0sex 28239 | The set of all non-negative surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s ∈ V | ||
| Theorem | nnsex 28240 | The set of all positive surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs ∈ V | ||
| Theorem | peano5n0s 28241* | Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s ⊆ 𝐴) | ||
| Theorem | n0ssno 28242 | The non-negative surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s ⊆ No | ||
| Theorem | nnssn0s 28243 | The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs ⊆ ℕ0s | ||
| Theorem | nnssno 28244 | The positive surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs ⊆ No | ||
| Theorem | n0sno 28245 | A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) | ||
| Theorem | nnsno 28246 | A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ No ) | ||
| Theorem | n0snod 28247 | A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0s) ⇒ ⊢ (𝜑 → 𝐴 ∈ No ) | ||
| Theorem | nnsnod 28248 | A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 𝐴 ∈ No ) | ||
| Theorem | nnn0s 28249 | A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ ℕ0s) | ||
| Theorem | nnn0sd 28250 | A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0s) | ||
| Theorem | 0n0s 28251 | Peano postulate: 0s is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ 0s ∈ ℕ0s | ||
| Theorem | peano2n0s 28252 | Peano postulate: the successor of a non-negative surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕ0s) | ||
| Theorem | dfn0s2 28253* | Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s = ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} | ||
| Theorem | n0sind 28254* | Principle of Mathematical Induction (inference schema). Compare nnind 12256 and finds 7890. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0s → 𝜏) | ||
| Theorem | n0scut 28255 | A cut form for surreal naturals. (Contributed by Scott Fenton, 2-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({(𝐴 -s 1s )} |s ∅)) | ||
| Theorem | n0ons 28256 | A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) | ||
| Theorem | nnne0s 28257 | A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) | ||
| Theorem | n0sge0 28258 | A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) | ||
| Theorem | nnsgt0 28259 | A positive integer is greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → 0s <s 𝐴) | ||
| Theorem | elnns 28260 | Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | ||
| Theorem | elnns2 28261 | A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴)) | ||
| Theorem | n0s0suc 28262* | A non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-Jul-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s ))) | ||
| Theorem | nnsge1 28263 | A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.) |
| ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) | ||
| Theorem | n0addscl 28264 | The non-negative surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s) | ||
| Theorem | n0mulscl 28265 | The non-negative surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s) | ||
| Theorem | nnaddscl 28266 | The positive surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 +s 𝐵) ∈ ℕs) | ||
| Theorem | nnmulscl 28267 | The positive surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs) | ||
| Theorem | 1n0s 28268 | Surreal one is a non-negative surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ 1s ∈ ℕ0s | ||
| Theorem | 1nns 28269 | Surreal one is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ 1s ∈ ℕs | ||
| Theorem | peano2nns 28270 | Peano postulate for positive surreal integers. One plus a positive surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → (𝐴 +s 1s ) ∈ ℕs) | ||
| Theorem | n0sbday 28271 | A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → ( bday ‘𝐴) ∈ ω) | ||
| Theorem | n0ssold 28272 | The non-negative surreal integers are a subset of the old set of ω. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ ℕ0s ⊆ ( O ‘ω) | ||
| Theorem | nnsrecgt0d 28273 | The reciprocal of a positive surreal integer is positive. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 0s <s ( 1s /su 𝐴)) | ||
| Theorem | seqn0sfn 28274 | The surreal sequence builder is a function over ℕ0s when started from zero. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → seqs 0s ( + , 𝐹) Fn ℕ0s) | ||
| Theorem | eln0s 28275 | A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs ∨ 𝐴 = 0s )) | ||
| Theorem | n0s0m1 28276 | Every non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)) | ||
| Theorem | n0subs 28277 | Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s)) | ||
| Theorem | n0p1nns 28278 | One plus a non-negative surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs) | ||
| Theorem | dfnns2 28279 | Alternate definition of the positive surreal integers. Compare df-nn 12239. (Contributed by Scott Fenton, 6-Aug-2025.) |
| ⊢ ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) | ||
| Theorem | nnsind 28280* | Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025.) |
| ⊢ (𝑥 = 1s → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕs → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕs → 𝜏) | ||
| Syntax | czs 28281 | Declare the syntax for surreal integers. |
| class ℤs | ||
| Definition | df-zs 28282 | Define the surreal integers. Compare dfz2 12605. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ ℤs = ( -s “ (ℕs × ℕs)) | ||
| Theorem | zsex 28283 | The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ ℤs ∈ V | ||
| Theorem | zssno 28284 | The surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ ℤs ⊆ No | ||
| Theorem | zno 28285 | A surreal integer is a surreal. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | ||
| Theorem | znod 28286 | A surreal integer is a surreal. Deduction form. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) ⇒ ⊢ (𝜑 → 𝐴 ∈ No ) | ||
| Theorem | elzs 28287* | Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) | ||
| Theorem | nnzsubs 28288 | The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 -s 𝐵) ∈ ℤs) | ||
| Theorem | nnzs 28289 | A positive surreal integer is a surreal integer. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ ℤs) | ||
| Theorem | nnzsd 28290 | A positive surreal integer is a surreal integer. Deduction form. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤs) | ||
| Theorem | 0zs 28291 | Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ 0s ∈ ℤs | ||
| Theorem | n0zs 28292 | A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ ℤs) | ||
| Theorem | n0zsd 28293 | A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0s) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤs) | ||
| Theorem | 1zs 28294 | One is a surreal integer. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ 1s ∈ ℤs | ||
| Theorem | znegscl 28295 | The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℤs → ( -us ‘𝐴) ∈ ℤs) | ||
| Theorem | znegscld 28296 | The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) ∈ ℤs) | ||
| Theorem | zaddscl 28297 | The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℤs ∧ 𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs) | ||
| Theorem | zaddscld 28298 | The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝐵 ∈ ℤs) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ ℤs) | ||
| Theorem | zsubscld 28299 | The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝐵 ∈ ℤs) ⇒ ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ ℤs) | ||
| Theorem | zmulscld 28300 | The surreal integers are closed under multiplication. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝐵 ∈ ℤs) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |