| Metamath
Proof Explorer Theorem List (p. 283 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | onnolt 28201 | If a surreal ordinal is less than a given surreal, then it is simpler. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) | ||
| Theorem | onslt 28202 | Less-than is the same as birthday comparison over surreal ordinals. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons) → (𝐴 <s 𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | ||
| Theorem | onsiso 28203 | The birthday function restricted to the surreal ordinals forms an order-preserving isomorphism with the regular ordinals. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ( bday ↾ Ons) Isom <s , E (Ons, On) | ||
| Theorem | onswe 28204 | Surreal less-than well-orders the surreal ordinals. Part of Theorem 15 of [Conway] p. 28. (Contributed by Scott Fenton, 6-Nov-2025.) |
| ⊢ <s We Ons | ||
| Theorem | onsse 28205 | Surreal less-than is set-like over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| ⊢ <s Se Ons | ||
| Theorem | onsis 28206* | Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ Ons → (∀𝑦 ∈ Ons (𝑦 <s 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝐴 ∈ Ons → 𝜒) | ||
| Theorem | bdayon 28207* | The birthday of a surreal ordinal is the set of all previous ordinal birthdays. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ Ons → ( bday ‘𝐴) = ( bday “ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴})) | ||
| Theorem | onaddscl 28208 | The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons) | ||
| Theorem | onmulscl 28209 | The surreal ordinals are closed under multiplication. (Contributed by Scott Fenton, 22-Aug-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons) | ||
| Theorem | peano2ons 28210 | The successor of a surreal ordinal is a surreal ordinal. (Contributed by Scott Fenton, 22-Aug-2025.) |
| ⊢ (𝐴 ∈ Ons → (𝐴 +s 1s ) ∈ Ons) | ||
| Syntax | cseqs 28211 | Extend class notation with the surreal recursive sequence builder. |
| class seqs𝑀( + , 𝐹) | ||
| Definition | df-seqs 28212* | Define a general-purpose sequence builder for surreal numbers. Compare df-seq 13906. Note that in the theorems we develop here, we do not require 𝑀 to be an integer. This is because there are infinite surreal numbers and we may want to start our sequence there. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | ||
| Theorem | seqsex 28213 | Existence of the surreal sequence builder operation. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ seqs𝑀( + , 𝐹) ∈ V | ||
| Theorem | seqseq123d 28214 | Equality deduction for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺)) | ||
| Theorem | nfseqs 28215 | Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) | ||
| Theorem | seqsval 28216* | The value of the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) ⇒ ⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅) | ||
| Theorem | noseqex 28217 | The next several theorems develop the concept of a countable sequence of surreals. This set is denoted by 𝑍 here and is the analogue of the upper integer sets for surreal numbers. However, we do not require the starting point to be an integer so we can accommodate infinite numbers. This first theorem establishes that 𝑍 is a set. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) ⇒ ⊢ (𝜑 → 𝑍 ∈ V) | ||
| Theorem | noseq0 28218 | The surreal 𝐴 is a member of the sequence starting at 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑍) | ||
| Theorem | noseqp1 28219* | One plus an element of 𝑍 is an element of 𝑍. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝐵 +s 1s ) ∈ 𝑍) | ||
| Theorem | noseqind 28220* | Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 +s 1s ) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑍 ⊆ 𝐵) | ||
| Theorem | noseqinds 28221* | Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ (𝑦 = (𝑧 +s 1s ) → (𝜓 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑍) → (𝜃 → 𝜏)) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝜂) | ||
| Theorem | noseqssno 28222 | A surreal sequence is a subset of the surreals. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝑍 ⊆ No ) | ||
| Theorem | noseqno 28223 | An element of a surreal sequence is a surreal. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐴) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 ∈ No ) | ||
| Theorem | om2noseq0 28224 | The mapping 𝐺 is a one-to-one mapping from ω onto a countable sequence of surreals that will be used to show the properties of seqs. This theorem shows the value of 𝐺 at ordinal zero. Compare the series of theorems starting at om2uz0i 13851. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) ⇒ ⊢ (𝜑 → (𝐺‘∅) = 𝐶) | ||
| Theorem | om2noseqsuc 28225* | The value of 𝐺 at a successor. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝐴 ∈ ω) ⇒ ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) +s 1s )) | ||
| Theorem | om2noseqfo 28226 | Function statement for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺:ω–onto→𝑍) | ||
| Theorem | om2noseqlt 28227* | Surreal less-than relation for 𝐺. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) | ||
| Theorem | om2noseqlt2 28228* | The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) | ||
| Theorem | om2noseqf1o 28229* | 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) | ||
| Theorem | om2noseqiso 28230* | 𝐺 is an isomorphism from the finite ordinals to a surreal sequence. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺 Isom E , <s (ω, 𝑍)) | ||
| Theorem | om2noseqoi 28231* | An alternative definition of 𝐺 in terms of df-oi 9396. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) ⇒ ⊢ (𝜑 → 𝐺 = OrdIso( <s , 𝑍)) | ||
| Theorem | om2noseqrdg 28232* | A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ ω) → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
| Theorem | noseqrdglem 28233* | A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
| Theorem | noseqrdgfn 28234* | The recursive definition generator on surreal sequences is a function. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) & ⊢ (𝜑 → 𝑆 = ran 𝑅) ⇒ ⊢ (𝜑 → 𝑆 Fn 𝑍) | ||
| Theorem | noseqrdg0 28235* | Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) & ⊢ (𝜑 → 𝑆 = ran 𝑅) ⇒ ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) | ||
| Theorem | noseqrdgsuc 28236* | Successor value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) & ⊢ (𝜑 → 𝑆 = ran 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑆‘(𝐵 +s 1s )) = (𝐵𝐹(𝑆‘𝐵))) | ||
| Theorem | seqsfn 28237 | The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ No ) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) ⇒ ⊢ (𝜑 → seqs𝑀( + , 𝐹) Fn 𝑍) | ||
| Theorem | seqs1 28238 | The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ No ) ⇒ ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| Theorem | seqsp1 28239 | The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ No ) & ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝑀) “ ω)) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → (seqs𝑀( + , 𝐹)‘(𝑁 +s 1s )) = ((seqs𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 +s 1s )))) | ||
| Syntax | cnn0s 28240 | Declare the syntax for surreal non-negative integers. |
| class ℕ0s | ||
| Syntax | cnns 28241 | Declare the syntax for surreal positive integers. |
| class ℕs | ||
| Definition | df-n0s 28242 | Define the set of non-negative surreal integers. This set behaves similarly to ω and ℕ0, but it is a set of surreal numbers. Like those two sets, it satisfies the Peano axioms and is closed under (surreal) addition and multiplication. Compare df-nn 12123. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω) | ||
| Definition | df-nns 28243 | Define the set of positive surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs = (ℕ0s ∖ { 0s }) | ||
| Theorem | n0sex 28244 | The set of all non-negative surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s ∈ V | ||
| Theorem | nnsex 28245 | The set of all positive surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs ∈ V | ||
| Theorem | peano5n0s 28246* | Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s ⊆ 𝐴) | ||
| Theorem | n0ssno 28247 | The non-negative surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s ⊆ No | ||
| Theorem | nnssn0s 28248 | The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs ⊆ ℕ0s | ||
| Theorem | nnssno 28249 | The positive surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕs ⊆ No | ||
| Theorem | n0sno 28250 | A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) | ||
| Theorem | nnsno 28251 | A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ No ) | ||
| Theorem | n0snod 28252 | A non-negative surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0s) ⇒ ⊢ (𝜑 → 𝐴 ∈ No ) | ||
| Theorem | nnsnod 28253 | A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 𝐴 ∈ No ) | ||
| Theorem | nnn0s 28254 | A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ ℕ0s) | ||
| Theorem | nnn0sd 28255 | A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0s) | ||
| Theorem | 0n0s 28256 | Peano postulate: 0s is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ 0s ∈ ℕ0s | ||
| Theorem | peano2n0s 28257 | Peano postulate: the successor of a non-negative surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕ0s) | ||
| Theorem | dfn0s2 28258* | Alternate definition of the set of non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ ℕ0s = ∩ {𝑥 ∣ ( 0s ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 +s 1s ) ∈ 𝑥)} | ||
| Theorem | n0sind 28259* | Principle of Mathematical Induction (inference schema). Compare nnind 12140 and finds 7826. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝑥 = 0s → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0s → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0s → 𝜏) | ||
| Theorem | n0scut 28260 | A cut form for non-negative surreal integers. (Contributed by Scott Fenton, 2-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({(𝐴 -s 1s )} |s ∅)) | ||
| Theorem | n0scut2 28261 | A cut form for the successor of a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) = ({𝐴} |s ∅)) | ||
| Theorem | n0ons 28262 | A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) | ||
| Theorem | nnne0s 28263 | A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) | ||
| Theorem | n0sge0 28264 | A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) | ||
| Theorem | nnsgt0 28265 | A positive integer is greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → 0s <s 𝐴) | ||
| Theorem | elnns 28266 | Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | ||
| Theorem | elnns2 28267 | A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴)) | ||
| Theorem | n0s0suc 28268* | A non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-Jul-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s ))) | ||
| Theorem | nnsge1 28269 | A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.) |
| ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) | ||
| Theorem | n0addscl 28270 | The non-negative surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐵 ∈ ℕ0s) → (𝐴 +s 𝐵) ∈ ℕ0s) | ||
| Theorem | n0mulscl 28271 | The non-negative surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s) | ||
| Theorem | nnaddscl 28272 | The positive surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 +s 𝐵) ∈ ℕs) | ||
| Theorem | nnmulscl 28273 | The positive surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs) | ||
| Theorem | 1n0s 28274 | Surreal one is a non-negative surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ 1s ∈ ℕ0s | ||
| Theorem | 1nns 28275 | Surreal one is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ 1s ∈ ℕs | ||
| Theorem | peano2nns 28276 | Peano postulate for positive surreal integers. One plus a positive surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕs → (𝐴 +s 1s ) ∈ ℕs) | ||
| Theorem | nnsrecgt0d 28277 | The reciprocal of a positive surreal integer is positive. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 0s <s ( 1s /su 𝐴)) | ||
| Theorem | n0sbday 28278 | A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → ( bday ‘𝐴) ∈ ω) | ||
| Theorem | n0ssold 28279 | The non-negative surreal integers are a subset of the old set of ω. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ ℕ0s ⊆ ( O ‘ω) | ||
| Theorem | n0sfincut 28280 | The simplest number greater than a finite set of non-negative surreal integers is a non-negative surreal integer. (Contributed by Scott Fenton, 5-Nov-2025.) |
| ⊢ ((𝐴 ⊆ ℕ0s ∧ 𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s) | ||
| Theorem | onsfi 28281 | A surreal ordinal with a finite birthday is a non-negative surreal integer. (Contributed by Scott Fenton, 4-Nov-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ ( bday ‘𝐴) ∈ ω) → 𝐴 ∈ ℕ0s) | ||
| Theorem | onltn0s 28282 | A surreal ordinal that is less than a non-negative integer is a non-negative integer. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ∧ 𝐴 <s 𝐵) → 𝐴 ∈ ℕ0s) | ||
| Theorem | n0cutlt 28283* | A non-negative surreal integer is the simplest number greater than all previous non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({𝑥 ∈ ℕ0s ∣ 𝑥 <s 𝐴} |s ∅)) | ||
| Theorem | seqn0sfn 28284 | The surreal sequence builder is a function over ℕ0s when started from zero. (Contributed by Scott Fenton, 19-Apr-2025.) |
| ⊢ (𝜑 → seqs 0s ( + , 𝐹) Fn ℕ0s) | ||
| Theorem | eln0s 28285 | A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs ∨ 𝐴 = 0s )) | ||
| Theorem | n0s0m1 28286 | Every non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)) | ||
| Theorem | n0subs 28287 | Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s)) | ||
| Theorem | n0subs2 28288 | Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs)) | ||
| Theorem | n0sltp1le 28289 | Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁)) | ||
| Theorem | n0sleltp1 28290 | Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ 𝑀 <s (𝑁 +s 1s ))) | ||
| Theorem | n0slem1lt 28291 | Non-negative surreal ordering relation. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑀 -s 1s ) <s 𝑁)) | ||
| Theorem | bdayn0p1 28292 | The birthday of 𝐴 +s 1s is the successor of the birthday of 𝐴 when 𝐴 is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday ‘𝐴)) | ||
| Theorem | bdayn0sf1o 28293 | The birthday function restricted to the non-negative surreal integers is a bijection with the finite ordinals. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ( bday ↾ ℕ0s):ℕ0s–1-1-onto→ω | ||
| Theorem | n0p1nns 28294 | One plus a non-negative surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs) | ||
| Theorem | dfnns2 28295 | Alternate definition of the positive surreal integers. Compare df-nn 12123. (Contributed by Scott Fenton, 6-Aug-2025.) |
| ⊢ ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω) | ||
| Theorem | nnsind 28296* | Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025.) |
| ⊢ (𝑥 = 1s → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 +s 1s ) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕs → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕs → 𝜏) | ||
| Theorem | nn1m1nns 28297 | Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ (𝐴 ∈ ℕs → (𝐴 = 1s ∨ (𝐴 -s 1s ) ∈ ℕs)) | ||
| Theorem | nnm1n0s 28298 | A positive surreal integer minus one is a non-negative surreal integer. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ (𝑁 ∈ ℕs → (𝑁 -s 1s ) ∈ ℕ0s) | ||
| Theorem | eucliddivs 28299* | Euclid's division lemma for surreal numbers. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐵 ∈ ℕs) → ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) | ||
| Syntax | czs 28300 | Declare the syntax for surreal integers. |
| class ℤs | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |